

International Journal of Research in Finance and Management

P-ISSN: 2617-5754
E-ISSN: 2617-5762
Impact Factor (RJIF): 5.32
IJRJM 2026; 9(1): 52-64
www.allfinancejournal.com
Received: 18-10-2025
Accepted: 23-11-2025

Henrietta Ighomrre
Public Policy Analyst, School
of Advanced International
Studies (SAIS), Johns Hopkins
University, USA

Policy pathways to support small business integration into carbon credit systems: An analysis of economic returns and sustainable growth

Henrietta Ighomrre

DOI: <https://www.doi.org/10.33545/26175754.2026.v9.i1a.677>

Abstract

Carbon credit markets are increasingly positioned as central instruments in global climate mitigation strategies, designed to mobilize private capital toward emissions reduction while supporting sustainable economic development. At a broad level, these markets have expanded rapidly, yet participation remains concentrated among large firms and specialized project developers. Small businesses despite their collective emissions footprint, innovation capacity, and local economic importance are often excluded due to high transaction costs, technical complexity, and regulatory barriers. This exclusion limits both the scalability of carbon markets and their potential contribution to inclusive green growth. This paper analyzes policy pathways that enable small business integration into carbon credit systems by aligning climate objectives with enterprise development and economic returns. It examines how existing carbon market architectures inadvertently disadvantage small firms through stringent monitoring requirements, high verification costs, and limited access to finance. Drawing on environmental economics, SME finance, and climate policy frameworks, the study identifies structural reforms that reduce entry barriers while preserving environmental integrity. The analysis then narrows to policy instruments that directly support small business participation, including aggregation platforms, standardized methodologies for low-scale projects, digital measurement and reporting tools, and targeted public risk-sharing mechanisms. Particular attention is given to how these policies influence expected economic returns for small businesses, transforming carbon credits from compliance-driven instruments into viable revenue streams that support reinvestment, productivity gains, and long-term sustainability. By linking carbon finance with SME growth strategies, the paper demonstrates how inclusive carbon markets can enhance market depth, improve emissions outcomes, and stimulate local economic resilience. The study concludes that integrating small businesses into carbon credit systems is not merely an equity consideration, but a strategic requirement for scaling climate finance and achieving durable, economy-wide decarbonization.

Keyword: Carbon credit markets, small businesses, climate finance, policy design, economic returns, sustainable growth

1. Introduction

1.1. Carbon markets, SMES, and the inclusion gap

1.1.1 Carbon Credit Systems in the Global Climate Finance Architecture

Carbon credit systems have emerged as a central pillar of the global climate finance architecture, translating emissions reductions into tradable financial assets that can mobilize capital at scale [1]. By assigning economic value to avoided or removed greenhouse gas emissions, carbon markets are designed to lower the cost of climate mitigation while incentivizing private sector participation [2]. Compliance and voluntary carbon markets now interact with broader climate finance instruments, including green bonds, climate funds, and results-based financing, positioning carbon credits as both environmental and financial tools [3].

At a systemic level, carbon credit mechanisms support international burden-sharing by allowing mitigation to occur where it is most cost-effective, while maintaining aggregate emissions caps or targets [4]. However, despite their growing sophistication, existing carbon market structures remain concentrated around large-scale projects and corporate actors with the technical capacity to navigate verification, monitoring, and transaction costs [5].

Correspondence Author:
Henrietta Ighomrre
Public Policy Analyst, School
of Advanced International
Studies (SAIS), Johns Hopkins
University, USA

This concentration limits market depth and constrains supply responsiveness, particularly as global net-zero commitments expand demand for high-quality credits. As a result, the long-term scalability and credibility of carbon markets increasingly depend on their ability to broaden participation beyond large emitters and project developers [6].

1.2 The Strategic Role of Small Businesses in Emissions Reduction and Green Growth

Small businesses occupy a strategic but underutilized position in emissions reduction and green growth pathways [4]. Collectively, they account for a substantial share of economic activity, energy use, and resource consumption, particularly in sectors such as agriculture, manufacturing, transport, and services [1]. Incremental efficiency gains, fuel switching, and adoption of low-carbon technologies across small enterprises can therefore generate meaningful aggregate emissions reductions [7].

Beyond mitigation potential, small businesses drive employment, innovation, and local value creation, making them critical to inclusive green growth [3]. Integrating these actors into carbon credit systems aligns climate objectives with economic development by rewarding operational improvements that also enhance productivity and resilience. However, without tailored market access, small firms remain excluded from carbon finance benefits, reinforcing a disconnect between climate markets and real-economy transformation [6].

1.3 Problem Statement and Policy Relevance

The exclusion of small businesses represents a structural constraint on the future scalability of carbon markets [8]. High transaction costs, complex verification requirements, and limited aggregation mechanisms prevent widespread participation, reducing supply diversity and limiting developmental co-benefits [2]. This gap poses both a climate risk, by constraining emissions reduction potential, and an economic risk, by sidelining a major engine of growth [5]. Policy relevance therefore lies in designing frameworks that integrate small businesses through aggregation, digital measurement, and supportive finance. Addressing this challenge is essential for aligning carbon markets with inclusive growth and long-term climate ambition [4].

2. Structure and economics of carbon credit markets

2.1 Carbon Credit Market Typologies and Value Chains

Carbon credit markets operate through two primary typologies: compliance markets and voluntary markets, each governed by distinct regulatory logics and value chains [6]. Compliance markets are created through legal mandates that cap emissions and require regulated entities to surrender allowances or credits to meet obligations. These systems prioritize regulatory certainty, standardized methodologies, and centralized oversight, shaping project eligibility and pricing structures [8]. Voluntary carbon markets, by contrast, allow firms and individuals to offset emissions outside regulatory requirements, relying on private standards, certification bodies, and reputational incentives [10].

Across both typologies, the carbon credit value chain follows a multi-stage lifecycle that transforms emissions reductions into financial returns. Projects begin with design

and baseline establishment, followed by validation, monitoring, reporting, and third-party verification [7]. Once credits are issued, they are marketed through brokers, registries, or bilateral contracts, with revenues realized only after successful sale and retirement. Each stage introduces technical, financial, and timing risks that shape participation incentives [12].

This structure favors actors with the capacity to absorb long development timelines, upfront costs, and regulatory complexity. Large firms and specialized project developers are better positioned to manage certification requirements, aggregate volumes, and negotiate favorable offtake agreements [9]. For smaller actors, delays between investment and revenue realization increase liquidity constraints and exposure to price fluctuations [14]. Understanding these typologies and value chains is therefore essential for explaining why participation remains uneven and why structural barriers persist for small businesses across carbon markets.

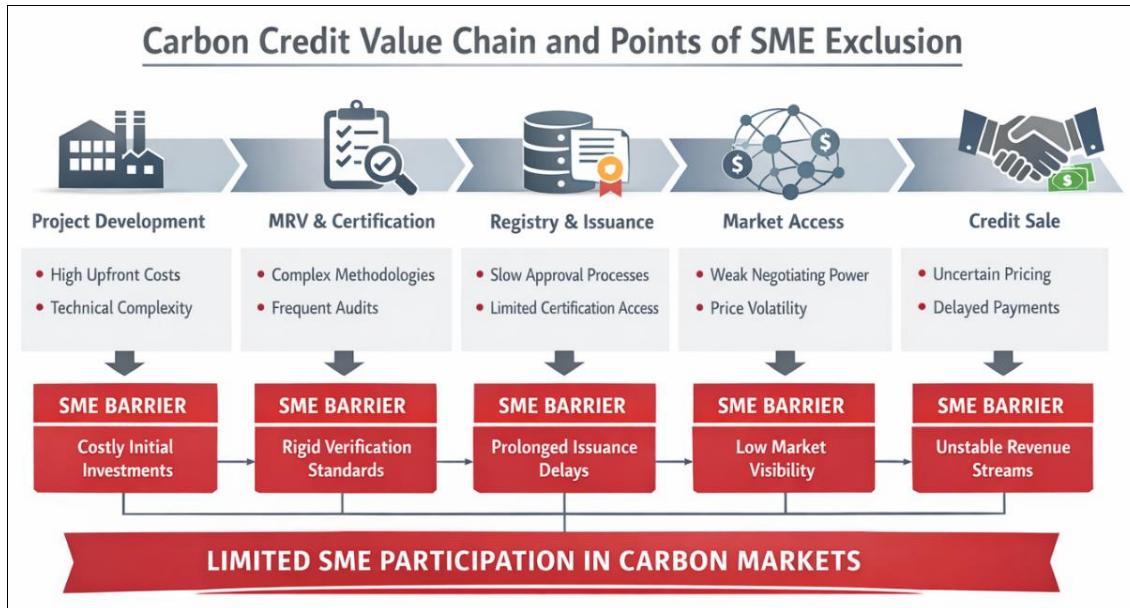
2.2 Cost Structures, Risk Profiles, and Return Dynamics

The economics of carbon credit participation are shaped by cost structures and risk profiles that disproportionately disadvantage smaller actors [11]. Transaction costs accumulate across project design, validation, verification, registry fees, and brokerage, often representing a significant share of total project value [6]. Fixed costs dominate early stages, meaning that per-unit costs decline only as project scale increases. This creates natural thresholds below which participation becomes economically unviable [13].

Verification expenses further intensify these barriers. Independent audits, periodic monitoring, and methodological compliance impose recurring costs that small firms struggle to finance without external support [9]. In addition, carbon credit prices exhibit volatility driven by regulatory changes, demand uncertainty, and quality differentiation [15]. Price risk is magnified for small projects that lack hedging options or long-term offtake contracts, exposing them to revenue instability.

Return dynamics also reflect delayed and uncertain cash flows. Credits are typically issued after emissions reductions are verified, meaning that capital is tied up for extended periods before revenue materializes [7]. For large firms, diversified portfolios and balance sheet strength mitigate this risk. Small businesses, however, face binding liquidity constraints that raise the effective cost of capital and limit participation [12]. These combined cost and risk dynamics explain why carbon markets, while theoretically open, remain practically inaccessible to many smaller emitters and innovators.

2.3 Scale Bias and Market Concentration Effects


Scale bias is a defining feature of contemporary carbon markets, shaping issuance, trading, and governance outcomes [10]. Because fixed costs dominate project development and compliance, larger firms achieve lower average costs and higher margins, reinforcing their competitive advantage [8]. This dynamic encourages market concentration, with a relatively small number of large developers accounting for a disproportionate share of issued credits [14].

Market concentration has broader systemic effects.

Liquidity and price discovery tend to occur around large volumes and standardized project types, marginalizing smaller, heterogeneous activities that are harder to aggregate [11]. Standards and methodologies also evolve around dominant project categories, further entrenching barriers for small businesses whose emissions profiles are dispersed across sites and activities [6].

As large actors dominate issuance and trading, carbon markets risk narrowing their mitigation portfolio and reducing resilience to policy or demand shocks [15].

Concentration can also weaken developmental co-benefits by sidelining small enterprises that drive local employment and innovation [9]. Addressing scale bias therefore requires deliberate institutional design to counteract structural advantages embedded in cost structures, standards, and market infrastructure. Without such intervention, carbon markets may expand in volume while remaining exclusionary in composition, limiting their long-term climate and economic impact [12].

Fig 1: Carbon Credit Value Chain and Points of SME Exclusion

3. Barriers preventing small business participation

3.1 Technical and Measurement Barriers

Technical and measurement requirements constitute one of the most immediate barriers preventing small and medium-sized enterprises from participating in carbon credit systems [13]. Central to this challenge is the complexity of monitoring, reporting, and verification processes, which are designed to ensure environmental integrity but impose high technical demands. MRV frameworks require precise baseline establishment, continuous emissions tracking, and standardized documentation that often exceed the data management capabilities of smaller firms [15].

Methodological rigidity further compounds exclusion. Many approved methodologies assume stable production processes, centralized facilities, and uniform emissions profiles, conditions more common among large industrial actors than SMEs [17]. Small businesses frequently operate across dispersed sites with heterogeneous activities, making it difficult to apply standardized measurement approaches without costly customization. Where methodologies do exist, they often require specialized consultants to interpret and implement, increasing dependence on external expertise [14].

Data requirements create additional friction. Reliable historical data, calibrated equipment, and periodic third-party assessments are prerequisites for credit issuance, yet many SMEs lack digitized records or formal energy monitoring systems [18]. The resulting information gaps raise verification risk and discourage certifiers from engaging

with small projects.

These technical barriers generate a self-reinforcing exclusion dynamic. SMEs unable to demonstrate compliance are excluded from participation, while standards continue to evolve around actors that can meet existing requirements [20]. Over time, this path dependency entrenches methodologies that privilege scale and technical sophistication, narrowing market accessibility. Addressing MRV complexity therefore represents a foundational challenge for inclusive carbon markets, as technical design choices directly shape who can credibly participate and benefit.

3.2 Financial Constraints and Risk Mismatch

Financial constraints interact with technical barriers to deepen SME exclusion from carbon credit markets [16]. Participation typically requires significant upfront investment to cover project development, baseline studies, verification fees, and registry costs before any revenue is realized. For SMEs operating with limited cash reserves, these costs represent a prohibitive entry threshold [13].

Revenue timing further intensifies the challenge. Carbon credits are issued only after emissions reductions are verified, creating long delays between investment and cash inflows [19]. This delay raises liquidity risk and increases the effective cost of capital for small firms, particularly those without access to patient financing. Large corporations can absorb such delays through diversified income streams, whereas SMEs face binding working capital constraints [15].

Risk mismatch is also evident in price volatility. Carbon credit prices fluctuate in response to policy signals, demand shifts, and quality differentiation, exposing participants to uncertain returns [17]. SMEs typically lack hedging instruments or long-term offtake agreements that could stabilize revenues. As a result, participation entails asymmetric downside risk relative to firm size and balance sheet capacity [14].

These financial dynamics discourage SMEs from engaging even when emissions reduction opportunities exist. Instead, firms prioritize short-term operational survival over uncertain future income streams. Without tailored financial instruments that align risk profiles with SME realities, carbon markets will continue to favor actors capable of absorbing volatility and delay. Financial exclusion therefore emerges not from market failure alone but from structural misalignment between carbon finance design and small-firm economics [20].

3.3 Regulatory and Institutional Frictions

Regulatory and institutional frictions further constrain SME participation by increasing uncertainty and transaction costs across carbon credit systems [18]. Certification processes are often centralized, opaque, and costly to navigate, requiring sustained engagement with standards bodies, validators, and registries [13]. For small firms, limited administrative capacity makes continuous compliance difficult, particularly

when operating across multiple jurisdictions.

Fragmented standards exacerbate these challenges. The coexistence of multiple voluntary standards, methodologies, and registries creates complexity that favors specialized intermediaries and large developers [16]. SMEs face higher information costs in identifying eligible pathways and assessing regulatory credibility. Policy uncertainty compounds this fragmentation, as shifting eligibility rules and market expectations alter project viability over time [19]. Institutional access barriers also matter. Many carbon market governance structures provide limited representation for SMEs, reducing their influence over methodological evolution and policy design [15]. As a result, standards tend to reflect the operational realities of dominant actors rather than diverse enterprise structures. This institutional asymmetry reinforces technical and financial exclusion by embedding scale bias into governance frameworks [17].

Collectively, regulatory and institutional frictions transform carbon markets into complex compliance environments rather than accessible climate finance platforms. SMEs are not excluded by explicit prohibition but by cumulative administrative burden and uncertainty. Reducing these frictions requires coordinated policy alignment, simplified certification pathways, and inclusive governance mechanisms. Without such reforms, institutional design will continue to privilege incumbents and limit the economic and climate potential of broad-based participation [20].

Table 1: Key Barriers to SME Participation in Carbon Credit Systems and Their Economic Effects

Barrier Category	Specific Constraint	How the Barrier Manifests	Immediate Economic Effect on SMEs	Wider Market and Development Impact
Technical & Measurement	Complex MRV requirements	High data granularity, frequent monitoring, specialized reporting	High compliance costs; reliance on external consultants	Concentration of credits among technically sophisticated actors
	Methodological rigidity	Standard methods assume large, uniform operations	Exclusion of dispersed or heterogeneous activities	Narrow mitigation portfolio; limited innovation diversity
	Data availability gaps	Lack of historical baselines and digital metering	Verification delays; increased rejection risk	Reduced supply responsiveness; slower market growth
Financial	High upfront transaction costs	Validation, verification, registry, and audit fees	Entry deterrence; negative project economics at small scale	Scale bias favoring large projects
	Delayed revenue realization	Credits issued only after verification	Liquidity stress; elevated cost of capital	Reduced participation rates; thin markets
	Price volatility exposure	No hedging or long-term offtake access	Uncertain returns; asymmetric downside risk	Higher risk premiums; unstable supply
Institutional & Regulatory	Fragmented standards	Multiple registries and certification regimes	High information and navigation costs	Market fragmentation; buyer uncertainty
	Limited certification access	Centralized validators; long approval timelines	Administrative burden; opportunity cost	Slow issuance; constrained market liquidity
	Policy uncertainty	Shifting eligibility rules and crediting periods	Deferred investment decisions	Weak long-term signals; underinvestment
Market Structure	Lack of aggregation mechanisms	SMEs must participate individually	Inability to reach viable scale	Issuance concentration; reduced inclusivity
	Weak bargaining power	Small volumes, limited market visibility	Lower realized prices	Inefficient price discovery
Governance & Representation	Limited SME voice in standards design	Methodologies shaped by large incumbents	Persistent misalignment with SME realities	Path dependency and entrenched exclusion

4. Policy design principles for inclusive carbon markets

4.1 Reducing Transaction Costs Without Diluting Integrity

Reducing transaction costs is a prerequisite for meaningful SME participation in carbon markets, but it must be achieved without compromising environmental integrity or

market credibility [18]. Current systems rely on complex, bespoke methodologies that raise fixed costs and favor large projects. Standardization offers a first-order solution by simplifying baseline setting, monitoring parameters, and documentation requirements for common SME activities such as energy efficiency, fuel switching, or process

optimization [20]. When core elements are standardized, verification becomes faster, cheaper, and more predictable. Modular methodologies further extend this logic. Rather than requiring end-to-end bespoke project designs, modular approaches allow standardized components to be combined according to firm characteristics and sectoral profiles [22]. This reduces the need for repeated methodological approval while preserving accuracy. Proportional compliance is equally important. Applying the same reporting intensity to small projects as to large installations imposes disproportionate burdens on SMEs [19]. Risk-based and size-adjusted verification frequencies lower costs while maintaining confidence in aggregate emissions outcomes. Digital tools reinforce these reforms by automating data capture and validation, reducing reliance on consultants and manual reporting [24]. Importantly, integrity is preserved through transparency, conservative baselines, and centralized registries rather than excessive procedural complexity. By aligning compliance requirements with risk and scale, markets can lower barriers without weakening trust. This recalibration reframes integrity as a system-level property rather than a firm-level burden, enabling broader participation while safeguarding climate outcomes over time [25].

4.2 Aggregation and Collective Market Entry Models

Aggregation mechanisms are central to overcoming the scale disadvantages faced by SMEs in carbon markets [21]. Individually, small firms generate emissions reductions that are too fragmented to justify high fixed costs. Collectively, however, these reductions can reach volumes attractive to buyers and certifiers. Cooperative models provide one pathway, allowing SMEs within a sector or geography to pool projects, share transaction costs, and negotiate collectively [18].

Sectoral pooling extends this logic by aggregating similar activities across firms, such as refrigeration upgrades or renewable heat adoption [23]. Standardized methodologies applied at portfolio level reduce per-unit costs and improve predictability. Platform-based issuance models further lower barriers by integrating MRV, certification, and market access within a single digital interface [25]. These platforms act as intermediaries, absorbing technical complexity and providing SMEs with turnkey participation options.

Aggregation also improves risk allocation. Price volatility and delayed revenues are spread across portfolios rather than borne by individual firms [20]. Long-term offtake agreements become feasible when aggregated volumes meet buyer thresholds, stabilizing cash flows and improving bankability [24]. From a governance perspective, aggregation simplifies oversight by reducing the number of discrete projects while maintaining transparency through centralized reporting.

Crucially, collective entry models preserve inclusivity without fragmenting market standards. They allow SMEs to participate on equal footing while maintaining consistency and environmental rigor. As carbon markets scale, aggregation becomes not a workaround but a core institutional feature that aligns market efficiency with broad-based participation and real-economy decarbonization [22].

4.3 Policy Credibility, Predictability, and Long-Term Signals

Policy credibility and predictability are decisive for SME investment decisions in carbon markets, where returns depend on future rules as much as current prices [19]. SMEs operate with shorter planning horizons and thinner margins, making them particularly sensitive to regulatory uncertainty. Frequent methodological changes, shifting eligibility criteria, or inconsistent government signaling raise perceived risk and discourage upfront investment [21].

Stable rules reduce this uncertainty by anchoring expectations. Clear eligibility pathways, predictable crediting periods, and transparent governance frameworks enable SMEs to assess whether participation aligns with their operational strategies [18]. Long-term policy signals, such as alignment with national climate targets or integration into broader green finance strategies, further reinforce confidence [23].

Credibility also depends on institutional consistency. When standards bodies, regulators, and registries apply rules uniformly, trust increases and learning effects accumulate [25]. Conversely, abrupt reversals or fragmented authority undermine participation even when market prices are attractive. For SMEs, credibility substitutes for scale: predictable rules lower the risk premium they implicitly face [20].

Policy design therefore plays a catalytic role. By committing to stable frameworks and signaling long-term support for inclusive participation, policymakers crowd in private investment without direct subsidies. Over time, predictability transforms carbon markets from speculative opportunities into reliable investment channels for small firms. This shift is essential for scaling mitigation while embedding climate finance within the productive economy rather than confining it to large incumbents alone [24].

5. Economic returns and business-level incentives

5.1 Carbon Credits as Revenue Streams for Small Businesses

When designed for accessibility, carbon credit participation can function as a meaningful revenue stream for small businesses rather than a peripheral environmental incentive [24]. For SMEs operating under tight margins, the ability to monetize emissions reductions converts operational improvements into cash-generating assets. Unlike traditional subsidies, carbon credits reward verified performance, aligning revenue generation with efficiency and emissions outcomes.

Cash flow timing is central to this dynamic. While conventional carbon markets have delayed revenue realization, reformed systems that incorporate aggregation, standardized MRV, and forward purchase agreements can significantly shorten the interval between investment and payment [26]. Advance offtake contracts or results-based payments provide earlier liquidity, enabling SMEs to finance upgrades without straining working capital. Price realization also improves as aggregated volumes attract more competitive buyers and reduce exposure to thin, illiquid markets [28].

From a margin perspective, carbon income supplements core business revenues without increasing output volumes or labor intensity. This incremental revenue can stabilize

earnings during demand fluctuations, particularly in energy-intensive sectors [25]. Importantly, carbon revenues are often countercyclical to energy price shocks: as efficiency gains rise, both cost savings and credit volumes increase. When carbon credits are treated as predictable revenue lines rather than speculative windfalls, SMEs adjust behavior

accordingly. They are more willing to invest in monitoring systems, process improvements, and long-term planning [30]. In this way, carbon markets begin to resemble auxiliary income infrastructure embedded within firm strategy, strengthening financial resilience and linking climate performance directly to business viability.

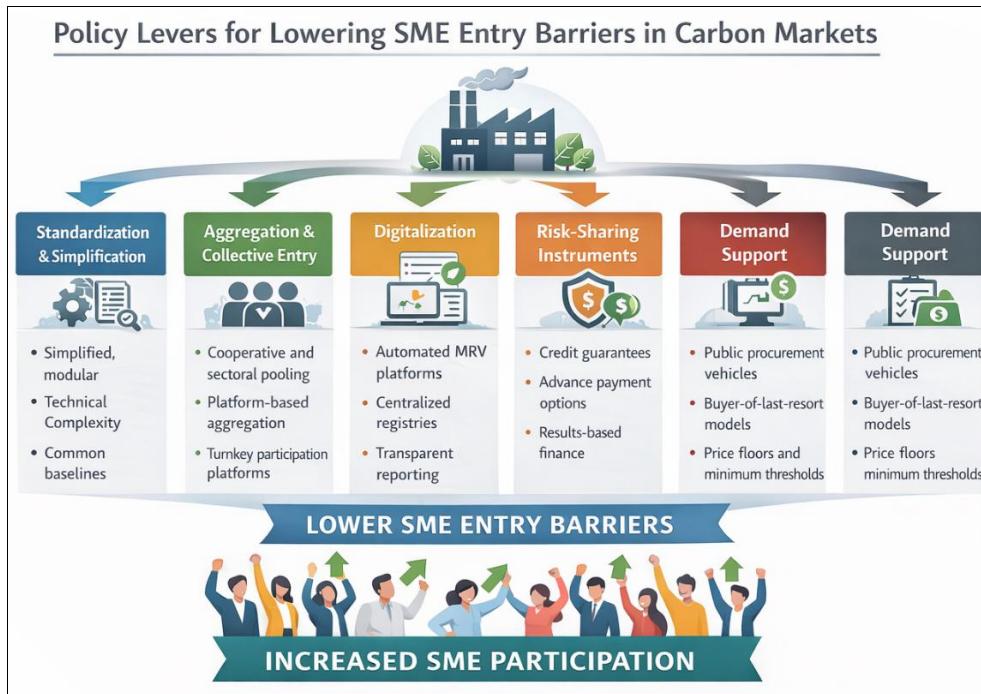


Fig 2: Policy Levers for Lowering SME Entry Barriers in Carbon Markets

5.2 Productivity, Cost Savings, and Competitive Advantage

Beyond direct revenues, carbon credit participation reinforces productivity gains and cost savings that enhance SME competitiveness [27]. Most credit-generating activities—such as energy efficiency upgrades, waste reduction, or fuel switching—lower operating costs alongside emissions [24]. Reduced energy consumption improves unit cost structures, allowing firms to protect margins or compete more effectively on price.

Process optimization driven by MRV requirements also generates managerial benefits. Tracking energy and material flows improves operational visibility, revealing inefficiencies that may otherwise remain hidden [29]. Over time, this data-driven discipline supports better maintenance, reduced downtime, and higher asset utilization. For SMEs, these gains can be transformative, shifting firms from survival-oriented operations toward strategic optimization.

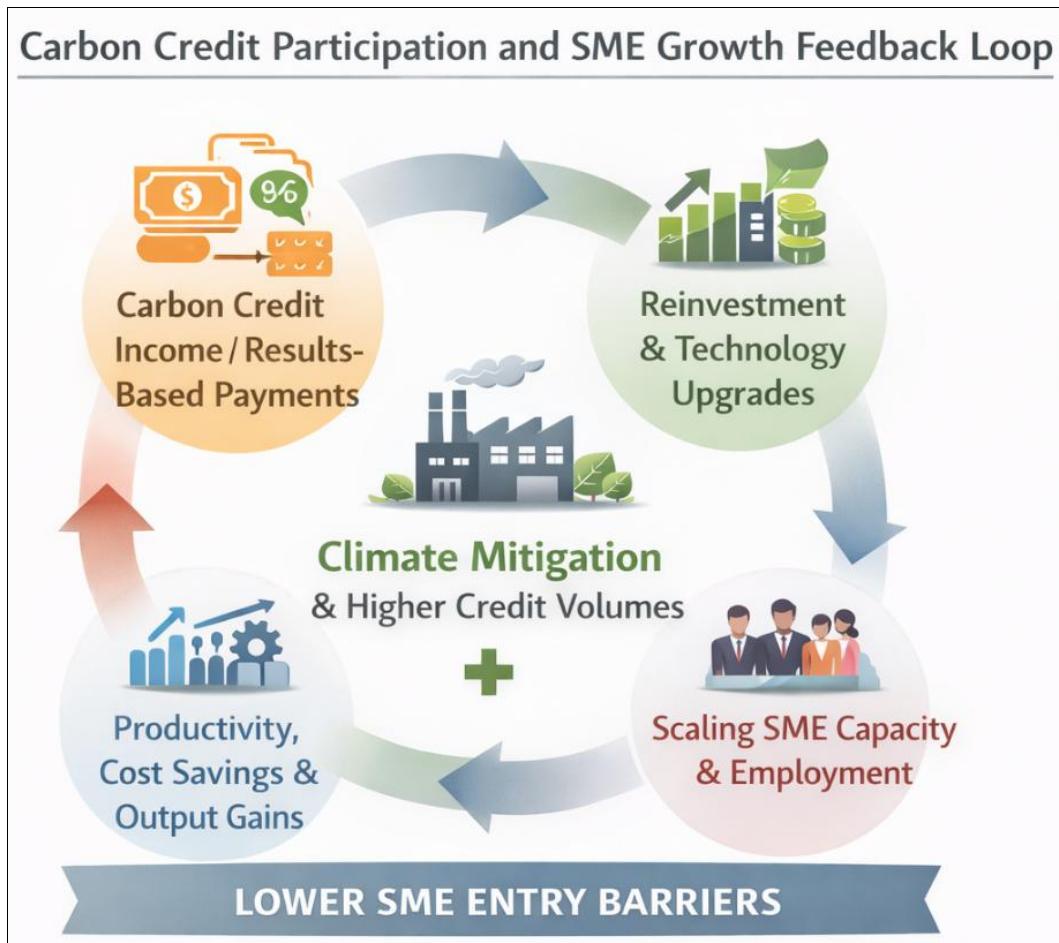
Carbon participation further enables market differentiation. Buyers, lenders, and supply-chain partners increasingly value emissions performance and transparency, particularly in export-oriented or corporate procurement contexts [26]. Verified carbon credits and associated disclosures signal operational sophistication and environmental responsibility, strengthening brand positioning and access to preferred markets.

Competitive advantage also emerges through risk mitigation. Firms with lower energy intensity and diversified revenue sources are less exposed to fuel price

volatility and regulatory tightening [30]. As carbon constraints expand across economies, early adopters internalize adaptation costs sooner and avoid abrupt compliance shocks later.

In combination, productivity improvements, cost reductions, and reputational gains reinforce one another. Carbon credits thus operate not as isolated financial instruments but as catalysts for broader operational upgrading. This integration embeds climate action within core business strategy, translating environmental performance into sustained competitive advantage for small enterprises [25].

5.3 Reinvestment, Scaling, and Employment Effects


The most durable economic impact of carbon credit participation lies in its reinvestment and scaling effects [28]. Incremental revenues and cost savings free up internal capital that SMEs can reinvest in capacity expansion, technology upgrades, or workforce development. Unlike one-off grants, carbon income recurs as long as performance is maintained, supporting cumulative growth trajectories [24]. Reinvestment strengthens scaling pathways. SMEs that successfully monetize emissions reductions are more likely to replicate improvements across additional sites or processes, expanding both production capacity and credit volumes [29]. This virtuous cycle lowers average costs, improves bankability, and attracts complementary finance. Carbon revenues can also serve as collateral or revenue assurance, improving access to credit for further expansion [26].

Employment effects follow naturally from scaling. As firms

grow, demand for skilled labor in operations, maintenance, data management, and compliance increases [30]. These jobs are often local and durable, reinforcing the developmental co-benefits of inclusive carbon markets. Importantly, employment growth is tied to productivity rather than rent-seeking, strengthening firm resilience.

At system level, widespread SME participation creates a growth feedback loop. Carbon income supports

reinvestment, reinvestment drives efficiency and scale, and improved performance generates additional credits and revenues [25]. This loop aligns climate mitigation with enterprise development, embedding decarbonization within the real economy. By enabling SMEs to grow, hire, and reinvest, carbon markets transition from abstract climate instruments into engines of inclusive green growth with tangible economic and social returns [30].

Fig 3: Carbon Credit Participation and SME Growth Feedback Loop

6. Policy instruments enabling SME integration

6.1 Digital MRV and Platform-Based Certification

Digital monitoring, reporting, and verification systems provide a practical pathway for lowering participation costs while strengthening transparency and integrity in carbon markets [28]. Traditional MRV relies on manual data collection, periodic site visits, and consultant-driven reporting, all of which impose high fixed costs that disproportionately exclude SMEs. Digital MRV compresses these costs by automating data capture through smart meters, sensors, and standardized reporting templates integrated into cloud-based platforms [31].

Automation reduces human error and shortens verification timelines, allowing emissions data to be processed continuously rather than episodically. This shift improves cash-flow predictability by accelerating credit issuance once performance thresholds are met [29]. Platform-based certification further streamlines access by bundling MRV, validation, registry interaction, and market linkage within a single interface. SMEs interact with one system rather than

navigating multiple standards bodies and intermediaries, reducing administrative friction [34].

Transparency is enhanced through immutable audit trails and real-time dashboards that allow regulators, buyers, and financiers to observe performance without repeated audits [30]. Importantly, digitalization does not weaken integrity; instead, it reallocates assurance from procedural repetition to data quality and system controls. Conservative baselines, automated anomaly detection, and centralized registries preserve credibility while lowering per-unit costs [35].

For governments, investing in shared digital MRV infrastructure represents a public good. Once established, platforms support thousands of SMEs simultaneously, generating scale economies unavailable through project-by-project approaches [32]. Digital MRV therefore transforms certification from a gatekeeping function into enabling infrastructure, aligning climate integrity with inclusive participation and faster revenue realization across sectors [28].

6.2 Public Risk-Sharing and Credit Enhancement Mechanisms

Even with lower transaction costs, SMEs face financial barriers arising from upfront investment needs and delayed carbon revenues [33]. Public risk-sharing mechanisms address this mismatch by reallocating early-stage risk away from firms least able to bear it. Credit guarantees linked to verified emissions performance reduce lender exposure and unlock working capital for eligible investments [28]. By lowering perceived default risk, guarantees crowd in private finance without replacing it.

Advance payment mechanisms further improve liquidity. Under these arrangements, a portion of expected carbon revenue is disbursed once baseline eligibility is confirmed, with reconciliation upon verification [31]. This structure shortens the financing gap between investment and credit issuance, enabling SMEs to undertake upgrades without depleting cash reserves. Results-based finance extends this logic by tying public payments directly to verified outcomes, ensuring fiscal discipline while supporting participation [35].

Risk-sharing also stabilizes revenue expectations. Price floors or minimum revenue guarantees reduce downside risk from market volatility, improving bankability and investment planning [29]. These instruments are particularly effective when targeted at aggregated SME portfolios, where diversification further reduces exposure [32].

Crucially, public involvement should be catalytic rather than permanent. Instruments are designed to de-risk early participation until scale, learning, and market depth reduce costs organically [34]. By aligning public support with verified performance, governments avoid subsidy dependence while accelerating private investment. Risk-sharing therefore functions as transitional infrastructure, enabling SMEs to cross initial participation thresholds and convert emissions reductions into reliable income streams [30].

6.3 Market Access Support and Demand-Side Policies

Supply-side reforms must be matched by demand-side policies that ensure SMEs can sell credits at predictable prices and volumes [28]. Market access support addresses asymmetries in bargaining power and information that disadvantage small sellers. Public procurement of carbon credits for compliance, neutrality commitments, or sectoral targets provides a stable anchor buyer that reduces demand uncertainty [33].

Buyer-of-last-resort models extend this approach by committing public or quasi-public entities to purchase eligible credits that meet quality thresholds when private demand falls short [35]. Such mechanisms stabilize prices and prevent market collapses that disproportionately harm small participants. Price floors embedded within procurement or auction frameworks further reinforce confidence by establishing minimum revenue expectations [29].

Governments can also support standardized offtake contracts and credit aggregation marketplaces that connect SMEs to buyers without bespoke negotiation [31]. These platforms reduce transaction costs, improve price discovery, and expand access to international demand. Demand-side transparency through public registries and disclosure of purchase commitments signals long-term policy support and crowds in private buyers [34].

Importantly, demand-side interventions do not require permanent public purchasing. Their primary function is to de-risk early market participation and stabilize expectations while private demand deepens [30]. When combined with digital MRV and risk-sharing, market access support completes the policy stack linking SME participation to economic returns. Together, these instruments transform carbon markets into reliable commercial channels for small businesses, aligning climate objectives with firm-level profitability and national growth priorities [32].

Table 2: Policy Instruments Linking SME Participation to Economic Returns

Policy Instrument	Primary Objective	How the Instrument Operates	Direct Economic Effect on SMEs	Market-Level and Development Impact
Digital MRV Platforms	Reduce transaction costs and delays	Automates data capture, reporting, and verification	Lower compliance costs; faster credit issuance	Higher participation; improved market transparency
Standardized / Modular Methodologies	Enable proportionate compliance	Applies common baselines and templates across similar activities	Reduced technical complexity; predictable eligibility	Broader supply diversity; methodological consistency
Aggregation & Pooling Mechanisms	Overcome scale constraints	Pools SME projects into sectoral or regional portfolios	Access to viable volumes; shared costs	Deeper markets; reduced issuance concentration
Public Credit Guarantees	De-risk upfront investment	Covers partial default risk for lenders financing SME projects	Improved access to working capital	Crowded-in private finance; lower cost of capital
Advance Payments / Pre-Finance	Address liquidity gaps	Provides early disbursement against expected credits	Improved cash flow; reduced capital strain	Higher project completion rates
Results-Based Finance	Reward verified performance	Public payments triggered by emissions outcomes	Predictable supplemental income	Integrity-linked incentives; fiscal discipline
Price Floors / Revenue Guarantees	Reduce downside price risk	Establishes minimum acceptable credit prices	Stabilized revenues; improved bankability	Reduced volatility; enhanced investor confidence
Public Procurement of Credits	Anchor demand	Government purchases credits for targets or neutrality	Guaranteed market access	Demand stability; market credibility
Buyer-of-Last-Resort Mechanisms	Prevent market collapse	Public or quasi-public purchase during demand shortfalls	Revenue certainty during downturns	Market resilience; sustained participation
Standardized Offtake Contracts	Improve price realization	Template contracts with transparent terms	Better bargaining position; predictable returns	Efficient price discovery; lower transaction costs

7. Macroeconomic and system-level impacts

7.1 Market Deepening and Carbon Price Stability

Integrating small and medium-sized enterprises into carbon credit systems contributes directly to market deepening and improved price stability by expanding both the diversity and volume of credit supply^[34]. When participation is limited to a narrow set of large projects, markets remain thin, episodic, and vulnerable to shocks arising from regulatory changes, project delays, or concentrated demand shifts. Broader SME participation introduces a larger number of smaller, distributed credit sources, smoothing issuance over time and reducing volatility associated with single-project dominance^[36].

Market depth also improves price discovery. A more diverse seller base increases transaction frequency and reduces information asymmetries between buyers and sellers, moderating extreme price swings^[38]. Aggregated SME portfolios further stabilize supply by diversifying operational and geographic risks, making issuance less sensitive to localized disruptions. As supply becomes more predictable, buyers gain confidence in forward contracting, reinforcing liquidity and dampening speculative behavior^[35].

Price stability has reinforcing effects. Predictable pricing encourages longer-term purchasing commitments and reduces risk premiums embedded in carbon transactions^[39]. This, in turn, lowers the cost of capital for project developers and intermediaries, enabling further market entry. SME integration therefore acts as a stabilizing force rather than a source of fragmentation. By converting dispersed mitigation activities into reliable, aggregated supply, inclusive market design strengthens resilience and credibility, supporting carbon markets as durable climate finance instruments rather than volatile niche mechanisms^[40].

7.2 Inclusive Green Growth and Employment Multipliers

At the macroeconomic level, SME integration aligns carbon markets with inclusive green growth objectives by embedding mitigation incentives within labor-intensive segments of the economy^[37]. Small businesses account for a significant share of employment and value creation, particularly in manufacturing, services, agriculture, and construction. When these firms access carbon revenues, efficiency gains and reinvestment translate into job creation and skill development rather than capital-intensive expansion alone^[34].

Employment multipliers emerge through several channels. Investments in energy efficiency, equipment upgrades, and process optimization increase demand for local technicians, installers, and maintenance services^[40]. As firms scale operations using carbon-linked income, indirect employment rises along supply chains, amplifying local economic impacts^[36]. These effects contrast with large, capital-heavy projects that generate limited employment once operational.

Inclusive participation also strengthens regional development. SMEs are geographically dispersed, allowing carbon finance to flow into secondary cities and rural areas often excluded from large-scale projects^[38]. This spatial distribution reduces regional inequality and strengthens

social acceptance of climate policies. Importantly, employment growth tied to productivity improvements is more resilient than subsidy-driven job creation, reinforcing long-term economic stability^[39].

By linking emissions reduction to enterprise growth and employment, inclusive carbon markets reposition climate action as a development strategy rather than a constraint. This alignment builds broader political and social support for decarbonization, reinforcing policy durability and expanding the constituency invested in climate finance success^[35].

7.3 Climate Finance Scalability and Capital Mobilization

SME integration enhances the scalability of climate finance by expanding the pipeline of investable, performance-linked mitigation activities^[40]. Large projects alone cannot meet the scale of emissions reductions required under global climate commitments. Distributed mitigation across thousands of firms unlocks a vastly larger opportunity set, converting incremental efficiency gains into aggregated financial assets^[34].

From a capital mobilization perspective, diversified SME portfolios improve risk-adjusted returns. Aggregation reduces idiosyncratic risk and enables standardized investment products attractive to institutional investors^[37]. As data quality and predictability improve through digital MRV and stable policy frameworks, carbon-linked revenues become bankable, supporting securitization and blended finance structures^[39].

Inclusive markets also crowd in domestic capital. When SMEs generate predictable carbon income, local banks and investors gain exposure to climate finance through familiar enterprise lending rather than distant project finance^[36]. This deepens domestic financial markets and reduces reliance on external funding. International investors benefit from broader diversification and reduced concentration risk, improving overall market resilience^[35].

At system level, SME participation transforms carbon markets from episodic offset mechanisms into continuous capital allocation platforms^[38]. As scale, liquidity, and credibility increase, carbon markets can mobilize larger volumes of private capital with declining public support. SME integration thus functions as a catalyst for market expansion, aligning climate ambition with financial scalability and embedding decarbonization within the productive economy^[40].

8. Implementation pathways and governance alignment

8.1 Institutional Coordination and Policy Sequencing

Effective inclusion of small and medium-sized enterprises in carbon credit systems depends on disciplined institutional coordination and carefully sequenced policy action rather than isolated reforms^[40]. Carbon markets intersect with energy policy, industrial regulation, financial supervision, and digital infrastructure, making fragmented implementation a primary risk. Without coordination, well-intended measures such as digital MRV platforms or aggregation mechanisms can stall due to misaligned mandates or regulatory overlap. Clear leadership and defined roles across ministries, regulators, and standards bodies are therefore essential to prevent duplication and policy drift^[42].

Sequencing matters because SMEs face cumulative constraints. Early-stage reforms should prioritize enabling infrastructure that reduces entry costs and uncertainty, including standardized methodologies, digital MRV systems, and clear eligibility rules [41]. These foundations lower transaction costs and signal commitment, making subsequent financial instruments more effective. Risk-sharing and demand-side measures are most impactful once participation pipelines are established; introducing guarantees or price floors too early can distort incentives or subsidize inactivity [44].

Policy credibility also depends on coherence across time. Abrupt changes in eligibility, crediting periods, or standards

undermine trust and deter SME investment [43]. Gradual expansion starting with priority sectors and scalable activities allows learning and adjustment while preserving confidence. Coordination with financial regulators is particularly important to ensure that carbon revenues are recognized within lending and risk frameworks, reinforcing bankability rather than creating parallel systems [45].

In practice, sequencing should follow a logic of enable, de-risk, and scale. By aligning institutions around this progression, governments can convert policy ambition into operational pathways that SMEs can realistically navigate, reducing resistance and increasing uptake without sacrificing market integrity.

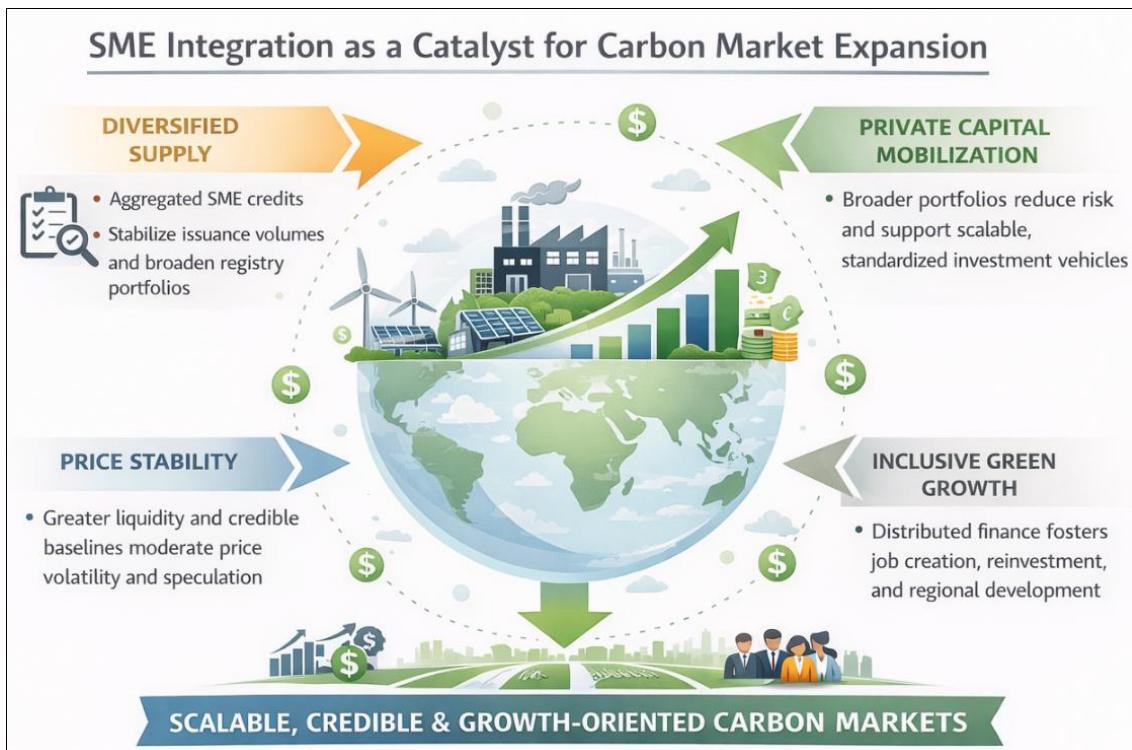
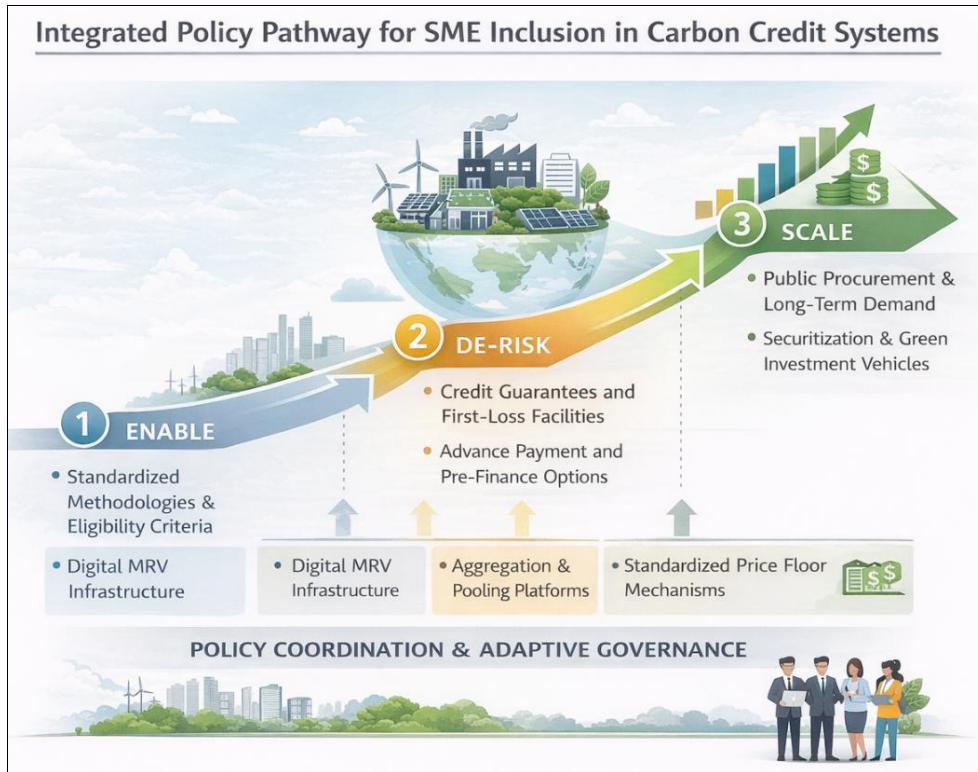


Fig 4: SME Integration as a Catalyst for Carbon Market Expansion


8.2 Monitoring Outcomes and Avoiding Market Fragmentation

Monitoring outcomes is critical to ensuring that SME inclusion strengthens rather than fragments carbon markets [41]. As participation expands, heterogeneity in project size, sector, and geography increases, raising the risk of inconsistent quality and diluted credibility. Robust outcome monitoring focused on emissions integrity, cost efficiency, and economic impact allows regulators to adjust rules while preserving trust [44].

Avoiding fragmentation requires harmonized standards and interoperable registries. When multiple methodologies or platforms evolve without alignment, SMEs face higher complexity and buyers confront quality uncertainty [40]. Centralized oversight with decentralized implementation offers a balance: common baselines, reporting formats, and verification thresholds paired with flexible delivery models [43]. Aggregation platforms can further reduce fragmentation by consolidating small activities into standardized

portfolios, simplifying oversight and market interaction [45]. Economic monitoring is equally important. Tracking participation rates, revenue realization, reinvestment, and employment effects ensures that inclusion delivers intended growth benefits rather than symbolic access [42]. Transparent publication of outcomes builds confidence among buyers, financiers, and policymakers, reinforcing demand and sustaining reform momentum.

Finally, adaptive governance is essential. Carbon markets evolve rapidly, and static rules risk obsolescence or unintended exclusion [41]. Regular reviews informed by data allow incremental refinement without destabilizing expectations. By coupling rigorous monitoring with harmonized standards, governments can expand SME participation while maintaining a unified, credible market. This balance ensures that inclusion deepens markets and strengthens climate finance rather than creating parallel, fragmented systems.

Fig 5: Integrated Policy Pathway for SME Inclusion in Carbon Credit Systems

9. Conclusion: From niche participation to systemic inclusion

The long-term credibility and scalability of carbon markets depend not on marginal technical refinement, but on broadening participation to include small and medium-sized enterprises as core economic actors rather than peripheral beneficiaries. Systems that remain structurally biased toward large firms risk becoming narrow, volatile, and disconnected from real-economy transformation. Integrating SMEs is therefore not a concession to inclusivity, but a strategic requirement for market depth, resilience, and sustained emissions reduction at scale.

SMEs collectively represent a vast reservoir of mitigation potential embedded within everyday production, logistics, and service activities. When enabled through proportionate regulation, aggregation, and predictable policy signals, these firms convert incremental efficiency gains into durable financial assets. Carbon revenues then reinforce productivity, competitiveness, and reinvestment, creating a virtuous cycle in which climate action supports enterprise growth and employment rather than constraining it. This alignment strengthens political legitimacy by demonstrating that decarbonization delivers tangible economic value across regions and sectors.

From a market perspective, SME participation expands supply diversity, improves price stability, and enhances liquidity, reducing concentration risk and speculative volatility. From a development perspective, it anchors climate finance within domestic economies, mobilizing private capital, supporting job creation, and accelerating green industrial upgrading. Inclusive policy design thus functions as a multiplier, transforming carbon markets from episodic offset mechanisms into continuous platforms for capital allocation and economic modernization.

Ultimately, credible carbon markets are those that scale with

the structure of the economy itself. Embedding SMEs at the center of market architecture aligns environmental integrity with growth, resilience, and social acceptance. Inclusion, in this context, is not a compromise it is the pathway through which carbon markets achieve both climate ambition and sustainable economic impact.

References

1. Anukwonke CC, Abazu CI. Green business through carbon credits. In: Climate Change Alleviation for Sustainable Progression. CRC Press; 2022 Sep 22. p. 315-332.
2. Hsiao A. Integrating Carbon Credits into Supply Chain Decision Simulations: Environmental Analysis and Business Strategy Discourse. Supply Chain and Sustainability Research: SCSR. 2024 Oct 1:17-33.
3. Fay M. Inclusive green growth: The pathway to sustainable development. World Bank Publications; 2012 May 23.
4. Ogunyemi FM, Ishola AO. Data-driven financial models for sustainable SME growth: Integrating green finance into small and medium enterprise strategies. 2024.
5. Guo S, Guo H. Development of Ecological Low-Carbon Agriculture with Chinese Characteristics in the New Era: Features, Practical Issues, and Pathways. Sustainability. 2024 Sep 9;16(17):7844.
6. Wang Z, Liang F, Li C, Xiong W, Chen Y, et al. Does China's low-carbon city pilot policy promote green development? Evidence from the digital industry. Journal of Innovation & Knowledge. 2023 Apr 1;8(2):100339.
7. Dan-Ekeh E. Developing enterprise-scale market expansion strategies combining technical problem-solving and executive-level negotiations to secure

transformative international energy partnerships. International Journal of Engineering Technology Research & Management (IJETRM). 2018 Dec 21;2(12):165-177.

8. Schoemaker D, Schramade W. Principles of sustainable finance. Oxford University Press; 2018 Dec 6.
9. Kwilinski A. E-commerce and sustainable development in the European Union: A comprehensive analysis of SDG2, SDG12, and SDG13. In: Forum Scientiae Oeconomia. Wydawnictwo Naukowe Akademii WSB; 2023. p. 87-107.
10. Jiya N. Digital transformation strategies for improving biotech supply chain resilience in the United States. GSC Biological and Pharmaceutical Sciences. 2025;33(3):170-184. DOI: 10.30574/gscbps.2025.33.3.0499.
11. Giwah ML, Nwokediegwu ZS, Etukudoh EA, Gbabo EY. Sustainable energy transition framework for emerging economies: Policy pathways and implementation gaps. International Journal of Multidisciplinary Evolutionary Research. 2020 Jan;1(1):1-6.
12. Stafford-Smith M, Griggs D, Gaffney O, Ullah F, Reyers B, *et al.* Integration: the key to implementing the Sustainable Development Goals. Sustainability science. 2017 Nov;12(6):911-919.
13. Akanbi D. Transforming multinational supply networks using predictive modeling, supplier-risk intelligence, and synchronized logistics planning to reduce volatility and strengthen operational continuity. Int J Finance Manage Econ. 2022;5(1):157-166. DOI: 10.33545/26179210.2022.v5.i1.680.
14. Dai Q, He J, Guo Z, Zheng Y, Zhang Y. Green finance for sustainable development: analyzing the effects of green credit on high-polluting firms' environmental performance. Humanities and Social Sciences Communications. 2025 Jun 18;12(1):1-3.
15. Zhou L, Wang D, Wang P. Stock Liquidity Under Climate Risk Shocks: The Buffering Effect of Green Governance and Institutional Strengthening of Carbon Trading Markets. Emerging Markets Finance and Trade. 2025 Dec 10:1-7.
16. Otoko J. Microelectronics cleanroom design: precision fabrication for semiconductor innovation, AI, and national security in the U.S. tech sector. Int Res J Mod Eng Technol Sci. 2025;7(2).
17. Hosseinkhani NT. Artificial Intelligence and Large Language Models in Energy Systems and Climate Strategies: Economic Pathways to Cost-Effective Emissions Reduction and Sustainable Growth. SSRN 5385513. 2025 Jul 22.
18. Lee JW. Green finance and sustainable development goals: The case of China. Journal of Asian Finance Economics and Business. 2020 Jul 30;7(7):577-586.
19. Ogunsakin OL. Artificial Intelligence in healthcare, revamping the artificial intelligence in medical sector. Iconic Research and Engineering Journals. 2024 Apr;7(10):245-258.
20. Wang T, Zhang Y, Wang T, Yuan H, Hu Y, *et al.* Exploring the role of green finance in advancing the shift to green energy: Insights from industrial enterprises in China. Energy. 2025 Nov 28:139379.
21. Yu Y, Zhang N. Revealing the power of market-based energy policy: Evidence from China's energy quota trading system using machine learning. Energy Policy. 2026 Jan 1;208:114905.
22. Charles-Udeh N. Leveraging financial innovation and stakeholder alignment to execute high-impact growth strategies across diverse market environments. Int J Res Finance Manage. 2019;2(2):138-146. DOI: 10.33545/26175754.2019.v2.i2a.617.
23. Hong Z, Xiao K. Digital economy structuring for sustainable development: the role of blockchain and artificial intelligence in improving supply chain and reducing negative environmental impacts. Scientific Reports. 2024 Feb 16;14(1):3912.
24. Lei X, Xu J, Zhang Z. Can the Energy Rights Trading System Become the New Engine for Corporate Carbon Reduction? Evidence from China's Heavy-Polluting Industries. Sustainability. 2025 Sep 12;17(18):8226.
25. Fasino JO. Improving the health and safety of manufacturing workers by detecting and addressing personal protective equipment (PPE) violations in real-time with the use of automated PPE detection technology [thesis]. Morgantown (WV): West Virginia University; 2023.
26. Xiong J, Chen L, Zhu Y, Maak T. Social Trust and Corporate Greenwashing: Insights from China's Pilot Social Credit Systems. Journal of Business Ethics. 2025 Jul 16:1-29.
27. Xie Y. Digital inclusive finance drives green innovation: Pathways and mechanisms for sustainable development. Journal of the Knowledge Economy. 2024 Nov 29:1-40.
28. Uzor DC. Cumulative impact of substance use disorders, mental illness, and marginalization on health system utilization patterns. World Journal of Advanced Research and Reviews. 2025;25(03):1923-1941. DOI: 10.30574/wjarr.2025.25.3.0962.
29. She J, Sun M, Yan H. The Impact of VAT Credit Refunds on Enterprises' Sustainable Development Capability: A Socio-Technical Systems Theory Perspective. Systems. 2025 Aug 7;13(8):669.
30. Foxon TJ. A coevolutionary framework for analysing a transition to a sustainable low carbon economy. Ecological economics. 2011 Oct 15;70(12):2258-2267.
31. Adejumobi AM. AI-driven construction management systems integrating BIM, real-time analytics, and automation to boost productivity and minimise cost overruns risks. Int J Civ Eng Archit Eng. 2024;5(2):87-96. DOI: 10.22271/27078361.2024.v5.i2a.90.
32. Tuerk A, Mehling M, Flachsland C, Sterk W. Linking carbon markets: concepts, case studies and pathways. Climate Policy. 2009 Jan 1;9(4):341-357.
33. Ogunsakin OL, Anwansedo S. Leveraging AI for healthcare administration: Streamlining operations and reducing costs. IRE Journals. 2024;7(10):235-244.
34. Soundarajan P, Vivek N. Green finance for sustainable green economic growth in India. Agricultural Economics/Zemědělská Ekonomika. 2016 Jan 1;62(1).
35. Corfee-Morlot J, Marchal V, Kauffmann C, Kennedy C, Stewart F, *et al.* Towards a green investment policy framework: The case of low-carbon, climate-resilient

infrastructure. OECD Publishing; 2012.

- 36. Jiya N. Strengthening US biotech competitiveness through AI-enhanced R&D infrastructure modernization. International Journal of Computer Applications Technology and Research. 2025;14(12):48-59. DOI: 10.7753/IJCCTR1412.1007.
- 37. Olekanma O, Rodrigo LS, Adu DA, Gahir B. Small-and medium-sized enterprises' carbon footprint reduction initiatives as a catalyst for green jobs: A systematic review and comprehensive business strategy agenda. Business Strategy and the Environment. 2024 Nov;33(7):6911-6939.
- 38. Zeidan R, Boechat C, Fleury A. Developing a sustainability credit score system. Journal of Business Ethics. 2015 Mar;127(2):283-296.
- 39. Paroussos L, Fragkiadakis K, Fragkos P. Macroeconomic analysis of green growth policies: the role of finance and technical progress in Italian green growth. Climatic Change. 2020 Jun;160(4):591-608.
- 40. Attipoe V, Chukwuma-Eke EC, Lawal CI, Friday SC, Isibor NJ, *et al*. Designing a Data-Driven Sustainable Finance Model: A Pathway for Small and Medium Enterprises to Transition to Clean Energy. Journal of Frontiers in Multidisciplinary Research. 2023 Jan;4(01):210-218.
- 41. Rana M, Khan SM, Ali S, Khalid A, Ahmad Z. Carbon credit, trading, green economy, and clean development mechanisms. In: Agroforestry for Carbon and Ecosystem Management. Academic Press; 2024 Jan 1. p. 147-159.
- 42. Otundo RM. Carbon credit concept and africa's sustainable development; an empirical review. 2024 May 10.
- 43. Martielli F, Tomás FG, Salvi A. Financial Tools for Sustainable Entrepreneurship: Exploring the Impact of Carbon Credits on Financial Outcomes. In: Dream, Risk, Achieve: The Spirit of Entrepreneurship. RESOCEM; 2024. p. 47-50.
- 44. Igwe-Nmaju C, Ucheya RU. Pioneering communication strategies for technology-driven change: A lifecycle framework from pilot to adoption. Int J Commun Inf Technol. 2025;6(2):32-42.
DOI: 10.33545/2707661X.2025.v6.i2a.139.
- 45. Nwani C. Financing low-carbon growth in Africa: Policy path for strengthening the links between financial intermediation, resource allocation and environmental sustainability. Cleaner Environmental Systems. 2022 Sep 1;6:100082.