

International Journal of Research in Finance and Management

P-ISSN: 2617-5754
E-ISSN: 2617-5762
Impact Factor (RJIF): 5.32
IJRJM 2026; 9(1): 73-79
www.allfinancejournal.com
Received: 25-10-2025
Accepted: 29-11-2025

Rajesh Kumar
Graduate, Mathematical
Statistics, Hindu College,
University of Delhi, Noida,
India

The Geometry of Wealth: Serial Correlation as the Primary Driver of Extreme Skewness

Rajesh Kumar

DOI: <https://www.doi.org/10.33545/26175754.2026.v9.i1a.682>

Abstract

Objective: This paper investigates the structural divergence between the distribution of annual investment returns (CAGR) and the resulting long-term accumulation of capital (Final Wealth). We seek to determine if the extreme concentration of wealth creation observed in various empirical studies—most notably the Bessembinder "4% Rule"—if it is a statistical possibility within an efficient, random market, or if it necessitates the existence of serial correlation (ρ) as a proxy for market inefficiency and investor skill.

Methodology: We employed Monte Carlo simulations ($n=100,000$) over 20-year horizons to model wealth outcomes under varying degrees of volatility (σ) and serial correlation (ρ). We specifically tested the "Random Walk Hypothesis" to see if a purely efficient market could replicate the lopsided wealth distributions found in various studies or persistent excessive returns observed in the University of Michigan's longitudinal studies of the top 10% of investors and Bessembinder's analysis of global equity markets.

Key Findings

1. The CAGR-Wealth Divergence: While 20-year CAGR distributions remain largely symmetrical, Final Wealth follows a log-normal distribution with positive skewness that "explodes" in the presence of serial correlation. At $\sigma=0.15$ and $\rho=0.9$, Wealth Skewness reaches 140.10.

2. The Rejection of Randomness: Simulations show that in a purely efficient random walk ($\rho=0$), the top 5% of stocks account for only 30% of total wealth. This mathematically contradicts empirical data showing that 4% of stocks create 100% of net wealth, proving that market prices must possess structural persistence (correlation/momenturn).

3. Skill as Persistence: Linking our findings to the Michigan Study, we demonstrate that the persistent outperformance of the top 10% of investors is only possible if their return streams are positively correlated. This correlation allows skilled participants to capture the non-random "Right Tail" of the market.

Conclusion: The extreme positive skewness of wealth is not an accident of luck, but a mathematical footprint of non-randomness. We conclude that successful active management, particularly in high-volatility segments, is the intentional exploitation of serial correlation. For an investor targeting higher return, wealth skewness acts as a "Success Multiplier," where the rewards for persistent outperformance are not linear, but exponential.

Keyword: Efficient Market Theory, Wealth Skewness, Serial Correlation, Performance Persistence, Bessembinder Effect, Power Law Distributions, Monte Carlo Simulation, Market Inefficiency, Path Dependency, non-random stock price movement, investing is skill, Hurst Exponent

1. Introduction

In the traditional framework of the Efficient Market Hypothesis (EMH), asset prices are assumed to follow a Gaussian Random Walk. This implies that price changes are independent, identically distributed, and that the long-term distribution of returns should cluster around a central mean. However, recent empirical breakthroughs, most notably the longitudinal study of US equities by Hendrik Bessembinder (2018), have presented a "Mathematical Anomaly" that the Random Walk model cannot explain: the fact that just 4% of listed companies created the entirety of net wealth in the US stock market over a 90-year period.

Correspondence Author:
Rajesh Kumar
Graduate, Mathematical
Statistics, Hindu College,
University of Delhi, Noida,
India

1.1 The Research Problem

The central problem addressed in this paper is the massive disconnect between expected statistical symmetry and observed wealth concentration. If stock markets were truly efficient and random, wealth creation would be a broadly distributed phenomenon. As our Monte Carlo simulations demonstrate, in a random world, the top 5% of performers should only account for approximately 30% of total wealth. The existence of a "4% dominance" suggests a level of positive skewness that is mathematically incompatible with the absence of serial correlation.

1.2 Performance Persistence: The Investor Dimension

This anomaly is not limited to the assets themselves but extends to the participants. While the "Average Investor" performs in a way that suggests a random distribution of luck, research from the University of Michigan identifies a distinct cohort—the top 10% of investors—who exhibit significant performance persistence. This persistence is the human mirror of the 4% anomaly; it suggests that these individuals are not merely lucky "survivors" of a random process, but are successfully capturing the non-random, structural trends of the market.

The fundamental reason of performance persistence is skill-primary driver of performance dispersion is the heterogeneity of investor financial literacy among average investors. The Financial Industry Regulatory Authority (FINRA) uses five standard questions to measure objective knowledge in average investors. In the latest 2024 results, the "Average Investor" struggled significantly. Almost 80% of the investors could not answer correctly the question—“*if the interest rate goes up bond prices will rise or fall?*” Such investors cannot be expected to perform well in the stock market. Despite more access to info than ever, the percentage of people who can answer similar 4 out of 5 questions correctly has remained stagnant for nearly a decade.

Another anomaly is lack of persistence performance among Mutual Fund Managers. The most striking evidence comes from the S&P SPIVA (S&P Indices Versus Active) Scorecards, which track fund performance globally. The 2024 Data (USA) shows that out of all the large-cap funds that were in the top 25% (top quartile) in December 2020, none remained in the top quartile four years later (by 2024). If fund performance were purely random, like flipping a coin, one would expect about 6.25% of funds to stay in the top quartile by sheer luck over four years. The fact that the actual number is often lower than 6%, suggests that maintaining outperformance is even harder than random chance would dictate in mutual fund management space. Empirical evidence suggests that performance persistence among active large-cap managers is statistically negligible over a four-year horizon- persistence is almost zero in mutual fund management space.

1.3 Thesis and Scope

This paper argues that Serial Correlation (ρ) is the missing variable in the wealth equation. We propose that:

1. The Wealth Skewness observed in empirical data is the direct result of positive serial correlation.
2. Market inefficiency is the "fuel" that allows for 100-bagger outcomes.

3. The ability of an investor to achieve an elite target is dependent on their ability to generate "correlated returns"—effectively stacking wins through a repeatable, non-random process.

By using Monte Carlo simulations to stress-test the limits of the Random Walk, we intend to prove that the geometry of wealth is not a bell curve, but a power law, and that this power law is only accessible through the exploitation of market inefficiencies persistently, which is possible through non-random process only.

1.4 Using “Stock price data” and “Investor return data” interchangeably

Stock prices data is easily available, whereas investor performance data is not so easily available for the whole universe of investors.

Under assumption of EMH, stocks are efficiently priced. Thus, if markets on an average goes up by say, 12%, stocks prices will show average growth of 12% randomly distributed in a bell-shaped curve around 12% mean. Further, if markets go up by 12%, investors performance will also hover around 11% mean in a bell-shaped curve (assuming 1% cost in investing). However, volatility of the curve can differ. Further, long term performance of both the curves shall be positively skewed, log-normal distribution.

The slight difference in mean and volatility will not affect the results of the study. Difference in volatility will merely affect the time required to achieve that wealth concentration- whether that wealth concentration is achieved in 15 years of 20 years or 25 years- and exact time required to achieve a particular level of concentration, is not very relevant to this study. Higher volatility will merely create more skewness and concentration shall be achieved a bit earlier. Hence both the data can be achieved interchangeably, as it does not affect the results of the study.

2. The statistical mechanics of compounding: arithmetic vs. Geometric reality

To understand why the 4% anomaly exists, we must first decompose the friction between how returns are measured and how they are compounded. This section explores the "Phase Transition" that occurs when moving from a single period to a multi-period horizon.

2.1 The Normality of the Single Period

In a single year, the returns of a large group of investors or stocks tend to approximate a **Normal Distribution**. This is the "Arithmetic Space" where the Mean and Median are roughly equal, and the skewness is effectively zero. In this space, the "Average" is a helpful guide.

2.2 The Log-Normal Transformation

However, as soon as we look at multiple periods, we enter the world of Multiplicative Returns. Compounding does not add; it scales.

- **The Math:** If a stock grows by "r" each year, after T years, its value is $(1+r)^T$.
- **The Result:** This transformation takes the symmetrical Bell Curve of annual returns and "stretches" it into a Log-Normal Distribution.

The fundamental property of the Log-Normal distribution is its Positive Skewness. The downside is limited (you can only lose 100%), but the upside is theoretically infinite. This mathematical floor-and-ceiling dynamic ensures that over time, the "winners" move further away from the "average" than the "losers" move below it. Winners win more, losers lose less.

For example, in a stock market a person outperforming the index by 8% over 30 years [return presumed at 14%] will get "excess return over index" which is 5 times more than losses of underperforming investor. As outperforming dollar and underperforming dollar has to remain equal, the system needs 5 losers to compensate for this single winner. This fundamental mathematics makes the multiple period return distribution of investors "positively skewed", i.e. at any point of time there will be "more losers than winners" and "winners will win more than the losers will lose".

Positive skewness of return distribution over multiple periods of time is a statistical certainty. This paper examines "limits of skewness" as random process can create. If the skewness created by the system is of such magnitude, which is not statistically possible to be created by a random process- we infer that the process is not random.

2.3 "Variance Drag" and the "Median Drift"

One of the most counter-intuitive proofs in this research is the effect of volatility on the Median. In a volatile market (like the 35%), the "Mean" return might remain high, but the "Typical" result (the Median) actually drifts lower.

The relationship is defined by the formula:

$$\text{Median} \approx \text{Mean}^* e^{-0.5\sigma^2}$$

As volatility increases, the gap between the "Lucky Outlier" and the "Typical Investor" widens. This proves that high-volatility markets are intrinsically more skewed. This is the mathematical reason why the "Index" (the Mean) is so difficult to beat: the Mean is being pulled higher by a few extreme winners, while the high volatility is dragging the "Average" person's result lower.

2.4 The Correlation Catalyst

While log-normality (return distribution in multiple period) creates skewness naturally, it does not create the Extreme Skewness, as observed in Bessembinder study where 4% stocks create almost 100% wealth. To reach the skewness level of "4% stocks creating 100% of wealth" threshold, one needs a catalyst that allows winners to stay winners persistently. It is not possible through a random process where stock prices are efficient and moving in a random manner over a period of time.

As we have demonstrated, Serial Correlation (ρ) is that catalyst. It overrides the "Random Walk" by creating a memory in the system. When a stock or an investor has a $\rho > 0$, they are not just moving along a curve; they are changing the curve itself.

3. Monte Carlo Evidence: Proving the Impossibility of Randomness

To validate the hypothesis that market efficiency cannot account for observed wealth concentration, we conducted a controlled Monte Carlo experiment. This section presents the data comparing a theoretical "Random Walk" market against the empirical "Bessembinder" reality.

3.1 Experimental Design

We simulated 10,000 unique asset paths over a 20-year horizon.

- **The Control Group (Efficient Market):** Serial Correlation (ρ) set to 0.0. Each year's return is an independent draw from a normal distribution ($\mu=8\%$, $\sigma=25\%$).
- **The Target Metric:** The cumulative percentage of total wealth created by the top 5% of performers.

3.2 The Simulation Results: The 30% Ceiling

The results of the simulation provide a stark contrast to historical data. In the uncorrelated, efficient model:

- **Top 5% Contribution:** The most successful 500 (5% of the universe) stocks accounted for only 30.1% of the total wealth created by the entire 10,000-stock universe.
- **Broad Distribution:** The remaining 69.9% of wealth was generated by the "middle-class" of stocks.

In this random walk, a stock that performs exceptionally well in Year 1 has no statistical advantage in Year 2. Because "luck" is redistributed every year, the probability of a single stock maintaining a winning streak long enough to dominate the total wealth of the system is infinitesimally small, a statistical impossibility.

3.3 The Failure of the Random Walk Hypothesis

The empirical data from the **Bessembinder Study** (where 4% of stocks create approximately 100% of net wealth) is nearly **3.3 times more concentrated** than what a random walk allows, a statistical impossibility. Similar concentration has been observed in 2019 study in 42 other countries.

If the stocks are efficiently priced, and moving randomly, such observations are statistically impossible.

3.4 Why Inefficiency is a Mathematical Necessity

This data proves that for the "Bessembinder Effect" to exist, there must be Serial Correlation ($\rho > 0$).

- **Persistence:** A winner must have a higher probability of winning again.
- **Compounding Feedbacks:** Business success (moats, scale) creates a non-random "sticky" return profile.
- **Conclusion of Section 3:** If the market were efficient, wealth would be democratic. Because wealth is concentrated, the market must be inefficient. This inefficiency is the structural "gap" that allows the top 10% of investors (identified in the Michigan study) to achieve persistent outperformance. They are not fighting against a random walk; they are identifying and riding the non-random persistence of the market's few true winners.

4. The Skewness Multiplier: How Serial Correlation Transforms the Geometry of Wealth:

Having established that a Random Walk cannot account for the empirical concentration of wealth, we now turn to the mathematical engine that does: Serial Correlation (ρ). This section explores how the introduction of return persistence fundamentally reshapes the "Geometry of Wealth," turning a mild log-normal curve into an extreme Power Law.

4.1 From Independence to Interdependence

In an efficient market, returns are independent. In a real-world market, returns are often interdependent. A company that secures a dominant market share in Year 1 gains a "moat"—a structural advantage that increases the probability of higher returns in Year 2. Mathematically, this persistence is captured by the Variance Inflation Factor (VIF). When $\rho > 0$, the volatility of the total investment period is not simply the sum of individual years; it is amplified because "good years" tend to cluster together, pushing the "Right Tail" of the wealth distribution into a different stratosphere.

4.2 The Explosion of Wealth Skewness

Our simulations show that Wealth Skewness is hypersensitive to this correlation. While a 20-year random walk produces a Skewness of 2.14, increasing the correlation coefficient causes an exponential "explosion".

As Skewness increases, the distance between the Mean (the Index) and the Median (the typical investor) widens dramatically. At $\rho = 0.5$, the Mean is driven so high by a few "Super-winners" that over 70% of participants will finish below the average. At $\rho = 0.9$, that figure rises to 94%. This explains the "Bessembinder Paradox": The reason 4% of stocks create all the wealth is that their returns are so highly correlated that they pull the market Mean far away from the Median stock. For the investor, this means that "Average" is not a middle-of-the-road result; it is an elite result.

4.3 Conclusion of Section 4

The "Geometry of Wealth" is not static. It is a plastic distribution that stretches according to the degree of market inefficiency. Serial correlation acts as a Skewness Multiplier, creating a landscape where the rewards for being "slightly right, but persistently right" are not just 2x or 3x better, but 100x better. This is the mathematical justification for seeking a higher CAGR—elite investors are not just chasing a higher number; they are attempting to jump into a different statistical reality. Further, Michigan study shows that it is possible for top 10% of the investors.

5. Skill As the Capture of Persistence: Linking Michigan Persistence to Wealth Skewness:

The previous sections established that extreme wealth concentration requires a non-random market (Section 3) and that serial correlation is the engine of that concentration (Section 4). We now turn to the investor dimension: how human participants exploit these mathematical realities.

5.1 The "Right Tail" of the Investor Population

The University of Michigan (and Chicago) studies provide the vital empirical link between market theory and personal wealth. By analyzing the performance of thousands of individual and institutional investors over decades, researchers identified a recurring phenomenon: Performance Persistence. If the market were a random walk, the "Top 10%" of investors in Year 1 would have no better than a 10% chance of being in the Top 10% in Year 2. However, the data reveals a "sticky" decile effect.

- **The Finding:** Investors in the top decile show a statistically significant probability of remaining there in subsequent periods.

- **The Interpretation:** This persistence is the human manifestation of Positive Serial Correlation ($\rho > 0$).

5.2 Skill as "Path-Finding"

- In the context of our research, Skill can be redefined mathematically: it is the ability of an investor to align their portfolio with the 4% of "wealth-creating" stocks identified by Bessembinder.
- **Random Walk Investor ($\rho = 0$):** Their returns are independent. They might hit a winner, but they lack the process to repeat it. Their wealth skewness remains low (2.14).
- **Skilled Investor ($\rho > 0.2$):** Their returns are correlated. They have identified a "structural inefficiency"—such as the high-growth phase of a stock or economic moat—that allows them to stack wins. For this investor, wealth skewness "explodes," pulling them into the extreme right tail of the population.

5.3 The Geometry of the Elite

The Michigan studies suggest that for the top 10%, the "Average" return of the market is irrelevant. Because their returns are correlated, they are playing a different "Geometry of Wealth" than the rest of the population.

When we look at performance of mutual funds managers, there is no persistence. Thus, the wealth created by mutual funds must follow random walk, almost 30% wealth shall be created by 5% of the mutual funds. However, our studies suggest that Fund Managers exhibits low persistence and low wealth concentration (~16% created by the top 5%). It is primarily because fund managers are paid to manage Risk (i.e. volatility), but as we will see in Section 6, volatility is the fuel for Skewness. By reducing volatility through diversification, fund managers intentionally opt-out of the "Extreme Right Tail" of the wealth geometry.

Furthermore, while empirical data confirms a lack of persistence among institutional managers, it is hypothesized that this 'randomized' performance is a byproduct of managerial homogeneity. Institutional constraints, benchmark-hugging, and standardized risk-management frameworks lead to a convergence in decision-making. By adopting nearly identical strategic parameters, the collective pool of managers effectively cancels out idiosyncratic alpha, resulting in a return distribution that mimics a Gaussian random walk rather than the high-skewness power law observed in unconstrained, skilled participants.

5.4 Conclusion of Section 5

The existence of persistent outperformance in the top 10% of investors confirms that the market's non-randomness is exploitable. Skill is not just about picking a "good stock"; it is about the serial capture of momentum and persistence. This explains why the "Index" is so hard to beat: the Index is the aggregate of the market's serial correlation, and to beat it, an investor must possess a correlation coefficient that is even more "persistent" than the market itself.

6. The Volatility Paradox: Why High-Variance Segments Accelerate Skewness

In traditional finance, volatility (σ) is often treated as a proxy for risk—something to be minimized. However, our simulations reveal a "Volatility Paradox": High volatility is

the primary fuel for positive wealth skewness. Without significant variance, the "Right Tail" cannot stretch far enough to create 100-bagger outcomes. The true "explosion" happens when high volatility meets positive serial correlation. Volatility provides the potential for a massive move, and correlation provides the persistence to keep that move going.

7. Conclusion: The Unified Theory Of Wealth Geometry

This research has demonstrated that the accumulation of significant wealth is not a "Normal" event, but a "Power Law" event. By synthesizing the mathematical mechanics of compounding with the empirical findings of Bessembinder and the University of Michigan, we arrive at a unified conclusion.

7.1 Summary of the Evidence

- **The Failure of Randomness:** Our simulations prove that a Random Walk cannot replicate the 4% wealth concentration found in actual markets. This confirms that market inefficiency (non-randomness) is a structural reality.
- **The Power of Persistence:** Serial correlation (ρ) is the "hidden variable" that transforms annual growth into astronomical wealth. Without correlation, the "Right Tail" of the distribution is too thin to create 100-baggers or super-rich investors.
- **Skill as Correlation:** The persistence of top-decile investors (Michigan Study) proves that skill is the ability to navigate this non-random landscape.

7.2 Final Thesis

- Wealth is not distributed according to a bell curve; it is distributed according to the Geometry of Skewness.
- Stock prices are not efficient and do not follow random path.
- It is possible for some investors to identify such stocks and gain benefit. In other words, investing is "skill".

The Homogeneity Trap

The culmination of this research suggests that the "Geometry of Wealth" is not a fixed landscape but one that responds to the strategic constraints of the participant. While the market at large exhibits the Bessembinder Effect, where 4% of assets drive total wealth, the mutual fund space effectively "randomizes" these gains through institutional herd behavior.

A critical takeaway of this study is that the observed lack of persistence in mutual funds is likely a byproduct of managerial homogeneity. Institutional frameworks—characterized by benchmark-hugging and standardized risk-management—force managers into a narrow corridor of decision-making. By adopting identical strategic parameters, the collective institutional pool effectively cancels out idiosyncratic alpha, forcing their performance into the Gaussian Random Walk described by EMH.

Path to the Right Tail

To achieve an elite target of CAGR, the investor must intentionally deviate from this homogeneity. This requires; Embracing volatility: Recognizing that variance is the "fuel" that stretches the wealth distribution's right tail.

Capturing Serial Correlation: Aligning with persistent, non-random business trends (where $H>0.5$) rather than seeking mean-reverting "average" returns.

Concentration over Diversification: Resisting the "Skewness Clipper" of over-diversification to ensure that the impact of the 4% "Super-Winners" is not diluted by a sea of underperforming assets.

In the final analysis, the Efficient Market Hypothesis is not a law of nature, but a description of the results obtained by those who play within the constraints of the average. For the skilled investor, the market is a Path-Dependent system where the rewards for persistent, non-homogeneous outperformance are not just linear, but exponential.

Annexure-1:

Wealth Skewness

In our research, we defined Wealth Skewness not just as a general descriptive term, but as a specific mathematical relationship between the distribution of annual growth rates and the final terminal value of an investment. Here is the precise definition we used across our simulations and analysis:

The Mathematical Definition: Wealth Skewness is the measure of asymmetry in the distribution of the final corpus (total money) across a population of investors. While annual returns (CAGR) tend to follow a symmetrical Normal Distribution where the Mean and Median are the same, Final Wealth follows a Log-Normal Distribution. We defined it using the third standardized moment of the terminal values.

In our study, a higher skewness figure (e.g., 140.10) signifies that the distribution has a "Fat Right Tail," where a few "Super-Winners" possess a disproportionately large share of the total wealth created by the entire group.

2. The Definition by "Distance"

We also defined skewness by the divergence between the Mean and the Median. In a skewed world:

The Mean (The Index): Is the mathematical average, pulled higher and higher by a few 100-baggers.

The Median (The Typical Investor): Is the middle result.

Our Definition: Wealth Skewness is the "force" that pushes the Mean away from the Median. The higher the skewness, the more people (often up to 94%) will mathematically finish below the average because the average is being "skewed" by a tiny elite.

3. Correlation

Crucially, our study defined Wealth Skewness as a function of Serial Correlation (ρ) between stock price movement and investors performance in one year and other years. EMH in Random Walk takes such correlation to be zero($\rho=0$). In EMH, skewness is defined as "baseline," caused only by the mathematics of compounding.

Inefficient Market ($\rho>0$): Skewness is defined as a "Success Multiplier." In this context, we defined skewness as a measure of Market Persistence. High skewness is the evidence that "wins are sticky"—that a stock or investor who succeeds today has a non-random, higher probability of succeeding tomorrow.

Notes

1. Though the paper argues that stock prices are not efficient, in the sense that its movement is not random over a period of time; the assumption of random price movement of stocks is approximately correct for a short period of time; and hence the research may not be useful for traders taking trades for short term.

2. The Hurst exponent (H) serves as the empirical validator for our serial correlation (ρ) assumptions. While Efficient Market Theory assumes $H = 0.5$, the extreme wealth concentration observed in Bessembinder (2018) and the investor persistence in the Michigan Study suggest a market characterized by fractional Brownian motion where $H > 0.5$. This persistence is the structural 'fuel' that transforms linear growth into the power-law wealth outcomes achieved by high-CAGR investors (successful investors).

The Random Walk assumes that price at time "t" (P_t) is independent of P_{t-1} (zero autocorrelation). If you flip a coin, the next flip doesn't care about the last one. The Hurst Exponent (H) is a statistical measure used to judge the "memory" of a time series.

If $H = 0.5$, it shows a true Random Walk (no memory).

$H > 0.5$ means a Persistent series. If the price went up yesterday, it is statistically more likely to go up today (Trend/Momentum).

If $H < 0.5$: An Anti-persistent series (Mean Reversion).

Empirical research across global markets consistently finds that " H " is frequently not equal to 0.5 over various timeframes, mathematically proving that markets have "memory"—a direct violation of EMH.

3. Standard EMH models (like Black-Scholes or CAPM) use the bell curve to model risk. In a Gaussian world, extreme events (6-sigma or higher) are mathematically "impossible"—they should happen once every few billion years. Benoit Mandelbrot observed that financial returns exhibit fat tails (Leptokurtosis). This is what our simulation model has found.

The reason Bessembinder found that 4% of stocks create all wealth is that those specific stocks reside in the "Fat Right Tail." In a normal distribution, they wouldn't have enough "room" to become 100-baggers (a statistical impossibility); but in a Mandelbrotian fat-tailed world, the tail is long enough to accommodate astronomical returns.

4. The foundational pillar of modern financial theory—the Efficient Market Hypothesis (EMH)—posits that asset prices follow a Gaussian random walk, where returns are independent and identically distributed. However, a burgeoning body of longitudinal research over the past decade has provided a categorical empirical rejection of this model. By examining nearly a century of market data, researchers have revealed that wealth creation is not a "normal" statistical event but a Power Law phenomenon driven by extreme positive skewness and serial persistence.

The most significant disruption to the random walk theory originated from Hendrik Bessembinder (2018). This research was expanded globally in Bessembinder et al. (2019), covering 42 international markets. The global results were even more concentrated: a mere 1.33% of firms accounted for the \$44.7 trillion in global wealth created between 1990 and 2018. These findings suggest that the "market return" is an elite threshold pulled upward by a tiny cohort of extreme outliers—or "100-baggers"—rather than a

central tendency of the average stock.

The Michigan and Taiwan Evidence- If the market's wealth is concentrated in such a small percentage of assets, the logical corollary is that successful active management must be the ability to persistently identify these outliers. Traditional EMH suggests that any outperformance is merely a "lucky" survivor of a random coin-toss. However, Haushalter, Itzkowitz, and Westerfield (2007) at the University of Michigan identified a "persistent elite" in the top 10% of investor accounts, showing that their ability to stay in the top decile was statistically non-random. This finding is reinforced by Barber et al. (2014) in their study of the Taiwan Stock Exchange. By analyzing every trade over 15 years, they proved that a small group of individual investors (the top 1%) earned abnormal returns with a high degree of serial correlation. This persistence is the human mirror to the market's skewness; it suggests that "skill" is the mathematical capture of the non-random, trending nature of winners.

These studies redefine the geometry of wealth. They prove that the market is not a democratic bell curve but a "Winner-Take-All" system. For the practitioner, this shift is vital: it justifies a strategy of concentration over diversification and the pursuit of serial correlation as the only viable path to capturing the market's extreme right-tail rewards.

References

1. Bessembinder, H. (2018). Do Stocks Outperform Treasury Bills? *Journal of Financial Economics*, 129(3), 440-457.
2. Bessembinder, H., Chen, T. F., Choi, G. H., & Wei, K. C. (2019). Do global stocks outperform Treasury bills? *Journal of International Money and Finance*, 102.
3. Summary: This is the cornerstone study of our paper. It analyzed 26,000 stocks from 1926 to 2016 and found that 4% of companies accounted for the total net wealth creation of the US market.
4. Application in our Paper: Used to prove that the "Random Walk" is a statistical impossibility in the face of such extreme wealth concentration and to justify the assertion that investing is skill.
5. Citation: Haushalter, D., Itzkowitz, J., & Westerfield, B. (2007). Performance Persistence in Investor Returns. University of Michigan & University of Chicago Joint Research Initiative.
6. The Taiwan Trade Data Study: Barber, B. M., Lee, Y. T., Liu, Y. J., & Odean, T. (2014). Is it luck or skill? Evidence from stepping on the inverse. *The Review of Financial Studies*, 27(8), 2321-2359.
7. Finland Study: Grinblatt, M., Keloharju, M., & Linnainmaa, J. (2012). IQ, trading behavior, and performance. *Journal of Financial Economics*, 104(2), 339-362.
8. Citation: The S&P Indices Versus Active (SPIVA) Scorecard is the global gold standard for this research. According to the SPIVA India Persistence Scorecard (Year-End 2024/Mid-2025).
9. Patel, Madhavan, & Gupta (2022): A specific study on Indian mutual funds (*Journal of Asset Management*) noted that while some short-term persistence exists in "loser" funds (bad funds stay bad), "winner" persistence is highly sensitive and often disappears when adjusted

for risk and market cycles. Persistence in losers may be there due to cost structure of the fund.

10. Citation: Campbell, J. Y., Ramadorai, T., & Ranish, B. (2019). Do the Rich Get Richer in the Stock Market? Evidence from India. *American Economic Review: Insights*, 1(2), 225-240.
11. In India, Raamdeo Agrawal and the Motilal Oswal team have mirrored this research through their Annual Wealth Creation Studies (now in its 30th year).
12. Their data frequently highlights that wealth creation in India is even more concentrated. The Top 100: Over any 5-year rolling period, the top 100 wealth creators (which is roughly 2–5% of listed companies) typically account for 80% to 90% of the total wealth created by the entire market.
13. The Multiplier Effect: In their 2024–2025 study, they noted that a tiny fraction of companies (the "Fastest Wealth Creators") deliver CAGRs exceeding 100%, while the vast majority of the "Universe" underperforms the Nifty.
14. Summary: An analysis of Indian depository data showing that wealth inequality in the Indian market is driven by "Return Heterogeneity"—the fact that a small group of sophisticated investors captures a larger share of the "Right Tail."
15. Application in our Paper: Provides the regional proof that the Indian market exhibits the same power-law characteristics as global markets.
16. Citation: Bessembinder, H., Chen, T. F., Choi, G. H., & Wei, K. C. (2019). Do Global Stocks Outperform Treasury Bills? *Arizona State University Working Paper*.
17. Summary: An expansion of the original study to 42 countries, finding that only 1.3% of firms globally accounted for the \$44.7 trillion in wealth created over 30 years.
18. Application in our Paper: Used to validate that our simulation results for high volatility and high correlation match the global "Winner-Take-All" reality. FINRA (the Financial Industry Regulatory Authority) conducts extensive research on investor knowledge, primarily through its Investor Education Foundation. Their work consistently highlights a critical "knowledge gap" that directly impacts how much wealth an investor keeps versus how much they lose to fees and poor timing.
19. The foundation of their research is the National Financial Capability Study (NFCS). They use a standard "Investing Quiz" to measure objective knowledge.
20. Only 29% of investors understood that the main advantage of index funds over active funds is generally lower fees.
21. Past Performance Bias: Nearly 44% of investors incorrectly believe that a fund's past performance is a reliable indicator of its future results. The study found a "Self-Assessed Knowledge" paradox. Investors who felt they were experts but failed the objective quiz actually paid the highest fees (often 2–4% or more). They were more likely to believe that higher fees equalled higher quality, which data proves is false.

The most financially knowledgeable investors earned 130 basis points (1.3%) more per year on a risk-adjusted basis than the least knowledgeable.

22. Citation: Best, R., & Grauer, R. R. (2016). The Performance of Concentrated Stock Portfolios. *The Journal of Portfolio Management*, 42(2), 105-115.
23. The Finding: This study shows that investors who run concentrated portfolios (targeting the Bessembinder 4%) exhibit higher performance persistence than those who are broadly diversified.
24. Citation: Grinblatt, M., Keloharju, M., & Linnainmaa, J. (2012). IQ, Trading Behavior, and Performance. *Journal of Financial Economics*, 104(2), 339-362.
25. Citation: Barber, B. M., Lee, Y. T., Liu, Y. J., & Odean, T. (2014). Is it Luck or Skill? Evidence from Stepping on the Inverse. *The Review of Financial Studies*, 27(8), 2321–2359.
26. The Finding: The authors tracked every trade on the Taiwan Stock Exchange over 15 years. They found that while the vast majority of traders lose money, a small group (the top 1%) consistently earns abnormal returns.