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Abstract 
There are several class of models to forecast electricity price and time series is one of the popular class. 

ERCOT market is different from other markets because it is very volatile market and is the subject of 

interest by many market participants. This paper attempts to forecast power prices in ERCOT market 

for short term. 
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1. Introduction 
In past decade or so, in order to increase efficiency in electrical supply chain - generation, 
transmission and distribution - and to make the power market competitive, many countries 
have deregulated their domestic electricity markets. With this deregulation, the market 
participants trade power & its derivatives like any other commodity or financial asset to meet 
their physical power obligations and to speculate & make money. The primary players in this 
market are i) Power Generators ii) Whole Sellers iii) and Retail Distributors. The 
transmission portion is still regulated in all countries and their role is limited to physical 
transmission of power at a fixed tariff. On top of this, there is a “System Operator” which is 
responsible for physical transmission of electricity and to maintain the reliability of 
transmission grid. For Texas market, the system operator is called as ERCOT (Electricity 
Reliability Council of Texas). Power Generators represent the supply side, Retail 
Distributors represent the demand side and the Whole Sellers facilitate the transactions 
between them. The power price settles only at real time - when the electricity physically 
flows - and is determined by the system operator by matching demand and supply of power. 
Although, there are several sub-markets within the power market and even more number of 
instruments but the most important one is the “Day Ahead Market”, which refers to the flow 
of power for each hour of next day. This is the most important market, because this market 
determines the physical flow of electricity, is the most active one and all products are 
derivative of this product only.  
In the day-ahead market, generators submit their capacity schedule along with offer price 
while whole sellers 7 retail distributors submit their demand schedule along with bids by 
9:00 am every day for the next operating day. ERCOT matches the supply and demand of the 
bi-lateral contracts but this doesn`t accounts for all of the electricity needs in “Day Ahead 
Market”. As one comes closer to the operating hour, the participants have an opportunity to 
revise their supply / demand schedules and prices through something called as “Hour Ahead 
Market” and “30 Minute Market”. But the actually demand is not completely known until the 
“Real Time” when the electricity actually flows. At the real time, the system operator i.e. 
ERCOT takes control of all the physical generators and other equipment s in the system, 
ensures that all contractual and non-contractual demands are met, maintains the system 
reliability and determines the price. In real time, demand and hence the price can be very 
different from the one projected even in prior hour; because demand is driven by weather 
conditions, individual power consumptions and because something of events like congestion, 
burn up of lines of the physical transmission lines and occasionally hurricanes. This is 
compounded by the fact that unlike other commodities electricity can`t be stored, the 
marginal cost of generators is a convex function and it is these factors that make electricity 
the most volatile commodity in financial market. 
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The price discovery mechanism in power market is called as 

“Locational Marginal Pricing” (LMP); in LMP, the 

incremental cost of providing next unit of power is the 

“Settled” price for that particular interval for a particular 

node, if there is no congestion. If there is congestion, cost to 

relieve congestion is added to the incremental cost. All 

market participants who choose to be float with market and 

are price takers, will settle their transaction at this price.  

Because of the physical constraints mentioned above and 

the unique price discovery mechanism, price electricity 

prices exhibit high frequency, high volatility, seasonality, 

time-varying volatility with asymmetries, and even negative 

prices. The purpose of this paper is to develop a model for 

forecasting hourly power prices for “Day Ahead Market” 

for three zones of the Texas market viz: North Zone, 

Houston Zone and South Zone and gauge the performance 

of the model. The secondary objective of the paper is to 

verify the presence of time-varying volatility, check whether 

shocks to volatility is asymmetric and whether an inverse 

leverage effect is present in Texas market. 

 

2. Literature Review 

There is a whole gamut of methodologies that have been 

applied for forecasting electricity prices. These can be 

broadly classified into three categories  

 Simulation Models: These models attempt to mimic 

the real time situations by estimating all the parameters 

viz. demand, generation, physical flow of electricity, 

weather conditions and even physical flow of electricity 

in grids. While this methodology is very detailed, it 

suffers from two drawbacks, namely the 

implementation complication of simulation model and 

high computational cost.  

 Game Theory Model: These models are more of 

“Economic” models and these models basically forecast 

the strategies of market participants and identify 

optimal solutions. 

 Time series Models: These models use the past 

behavior of electricity prices and / or some exogenous 

variables to forecast future electricity prices. Within 

this group, there are three categories of models a) 

Stochastic Models b) Artificial Intelligence Models c) 

and Regression Methodology. A summary of these 

methodologies (Girish et al. 2013) [3] is present in the 

Table 1 below. 

 
Table 1: Electricity Price Forecasting Methodology Summary 

 

 
 

The major advantages of using traditional statistical models 

are their simplicity, explicitness of model structures, 

accuracy of prediction results, and ease of implementation. 

Different variants of ARIMA models have been used to 

forecast prices like Autoregressive Integrated Moving 

Average (ARIMA), and ARMA with exogenous variables 

(ARMAX) models. Simple ARIMA models are inefficient 

because they fail to explain the non-linear & asymmetric 

behaviour and time varying volatility of power prices; In 

order to correctly model the electricity prices, ARIMA-

EGARCH models have been used for forecasting. One such 

model is by Bowden & Payne named “Short Term 

forecasting of electricity prices for MISO Hubs: Evidence 

from ARIMA-EGARCH models”. This model has been 

replicated here in part for the Texas market. 

 

3. Data 
In Texas, ERCOT determines prices every 15 minutes at 

each Hub and this price is called as “Real Time Locational 

Marginal Price” (RTLMP). Hourly Hub price has been 

calculated by taking an average of the 15 minutes prices for 

every hour. Since there are many hubs within a zone, Zonal 

price has been arrived at by calculating an arithmetic mean 

of hourly prices of all hubs within that zone. The unit of 

analysis, for this paper is Zonal Hourly prices calculated by 

above methodology. The zonal hourly prices represent the 

price of physical power but it is good for financial 

instruments as well because all settlements on financial 

deals are done on hourly RTLMP only. Also, unlike other 

commodities like Oil & Natural Gas, physical power doesn’t 

enjoy any premium over financial power. Although, 

RTLMP is available at 15 minute granularity, the hourly 

granularity was chosen for modelling purposes primarily 

because of two reasons: i) in the capital market, power is 

transacted at hourly level or in blocks of hour rather than at 

15 minute level ii) Modelling prices at 15 minute level will 

make it more complicated both in terms of number of 

observations and in terms of distribution assumptions. The 

15 minute interval data for the three zones was downloaded 

from ERCOT’s website. The data has been collected for a 

period of six months from January 1st 2009 to June 30th 

2009 which has yielded 4,344 rows of data. A summary of 

the statistics is shown in Table 2 below.  

 
Table 2: Summary statistics for North, Houston and South zones 

prices in $/Mwh 
 

 
North Houston South 

Min. -24.5 -24.5 -24.5 

1st Qu. 18.2 18.2 18.0 

Median 24.0 24.0 23.7 

Mean 29.0 32.1 34.2 

3rd Qu 31.8 31.9 31.6 

Max. 1700.9 1203.3 2115.3 

 

Across the three zones, the power prices vary over a wide 

range from $-24.5 to $2115.3. Across the three zones, 

median price varies over a narrow range of $23.7 to $24.0 

while mean prices hovers in range of $29.0 to $34.2. 

Maximum prices can shoot over thousand dollars (in times 

of congestion) and on windy nights it can fall below zero. 

Unlike other markets, negative price is possible in power 

markets. Wind generators have zero marginal cost and are 
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granted free “Emission Certificates” from government for 

producing clean power which can be traded in market. 

Hence these wind generators can afford to generate power 

even when the prices are below zero as long as they make 

money on the emission certificates. 

 

4. Methodology and Econometric Analysis 

To come up a model for forecasting RTLMP, ARIMA-

EGARCH model has been developed via Box-Jenkins (Box 

and Jenkins, 1976) [9] framework: to start with, the price 

time series was made stationary, the model structure was 

identified, then parameters were estimated and lastly a series 

of diagnostic checks were done on residuals. This 

methodology is along the lines of work done by Nogales et 

al. (2002) [4], Contreras et al. (2003) [5], Cuaresma et al. 

(2004) [6], and Conejo et al. (2005) [7]. 

 

4.1 Stationary Test 

Before zonal hourly prices can be fitted to any model, they 

need to meet the stationary condition. To start with, a time 

series plot of the zonal hourly prices was plotted as shown 

in Figure 1 below (North zone). The time series plot doesn’t 

reveal anything outright: the plot seems very volatile; while 

it is not trending in any direction per se but it gives no clue 

whether the prices have stochastic drift or a deterministic 

trend.  

 

 
 

Fig 1: Plot of North Zone Power prices 

 

To detect the stationary in the time series, the formal unit 

root tests were carried out. The result from Dickey Fuller 

(DF) and KPSS tests is shown in Table 3 below. 

 
Table 3: Dickey Fuller and KPSS tests on raw data for North, 

Houston and South zones. 
 

 
North Houston South 

Dickey Fuller -28.25 -33.98 -29.39 

KPSS (p Value) 0.01 0.01 0.01 

 

Result from DF test, follows Tau distribution and upon 

comparing with critical values, null hypothesis is rejected, 

which implies that prices are stationary. But the p values 

from KPSS test is 0.01, which allows us to reject the null 

(that price is stationary) and hence implies that prices are 

non-stationary.  

Since DF test, checks only for I (1) stationary condition, the 

DF test could be flawed especially if the raw price is not 

integrated of order one. To further analyze whether these 

time series are stationary, the ACF and PACF plots 

(correlogram) and the correlation table were generated. As 

shown in Figure 2 below (North zone), there is a strong 

correlation in hourly prices especially in the beginning 

region (in-circled in red) and in the middle region (in-circled 

in blue). For North zone, ACF correlation at first lag is as 

high as 0.69 and is significantly high for up to 7th lag; but 

perhaps the autocorrelations at lags 2 and above are merely 

due to the propagation of the correlation at first lag. This 

assumption is confirmed upon analyzing the PACF plot 

which has a significant positive spike only at lag 1 (all 

though it has negative spikes at 4th and 5th lag). Similarly, in 

the middle region, in the vicinity of 19 to 30 lags, both the 

ACF and PACF plots depicts a region of high correlation, 

with correlation peaking at 24th lag (ACF: 0.434 and PACF: 

0.136). Like above in the middle region too, correlation at 

24th lag is propagating to subsequent lags. These plots are 

very different from those of a stationary process, say for 

example white noise: the ACF and PACF plot of white 

noise is randomly centered around mean in both the 

directions and are not significant. This implies that the 

North zone prices are not stationary àand differencing is 

required before proceeding further.  

 

 

 
 

Fig 2: ACF & PACF plots of North Zone Power prices 

 

Intuitively, it makes a lot of sense for the power prices to 

depict such a correlation. Power prices are function of 

demand and demand in turn is a function of “Electrical 

Activity” in the zone. Since the amount of electrical activity 

don`t change substantially between two successive hours, 

prices in consecutive hours depict high correlation. 

Similarly, the amount of “Electrical Activity” in a given 

hour on two successive days is almost the same, the prices 

are strongly correlated with prices 24 hours back. For 
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example “Electrical Activity” at say 9:00 am on two 

consecutive days is almost same and hence a strong 

correlation in prices.  

A similar story holds true for power prices in Houston and 

South zones. In these zones also, the hourly prices are 

strongly correlated with prices in previous hour and prices 

24 hours back and their ACF and PACF plots looks very 

similar to that of North zone. Please refer to Appendix A for 

ACF and PACF plots of all the three zones. 

To make the series stationary, non-seasonal first order 

differencing and seasonal twenty-fourth order differencing 

is required. After differencing, formal stationary test 

Augmented Dickey Fuller (ADF) was carried out on the 

differenced data and it was found to be stationary as shown 

in the Table 4 below. This modification is consistent with 

Bowden and Payne, 2008. 

 
Table 4: ADF test on differenced data for North, Houston and 

South zones. 
 

 
North Houston South 

Augmented Dickey Fuller -20.72 -20.31 -20.27 

 

For the North zone, the ADF test yielded -20.72, for 

Houston zone it yielded -20.31 and for South zone, it was -

20.27. For all the three zones, the ADF value is beyond the 

critical values from Tau table and so null hypothesis was 

rejected. To further ascertain that the series is stationary, the 

ACF and PACF correlogram and tables for differenced 

series were generated and it confirmed that the differenced 

series is stationary. Please refer to Appendix B for ACF & 

PACF correlogram on differenced data. For ADF test above, 

number of lags was calculated using a thumb rule suggested 

by Schwert (1989) and is given by following formula: 

 

Lag Maximum = {12 *(N/100)0.25} where N is the number of 

observation.  

 

The number of lags was calculated to be 30. 

 

4.2 ARMA Model 

Now that the data is stationary, it can be fitted into an 

ARMA model. To determine the lags for ARMA model, the 

ACF & PACF plots and correlation table for differenced 

series was analyzed. The detailed analysis only for north 

zone has been presented here but a similar analysis was 

carried out for other zones also. 

 

  
 

Fig 3: ACF & PACF plots of North Zone differenced prices 

 

Table 5: ACF and PACF correlation table for North Zone differenced prices. 
 

ACF PACF ACF PACF 

Lag Correlation Lag Correlation Lag Correlation Lag Correlation 

1 -0.467 1 -0.467 19 -0.004 19 -0.042 

2 -0.097 2 -0.403 20 0.045 20 0.037 

3 0.146 3 -0.162 21 -0.078 21 -0.045 

4 -0.076 4 -0.150 22 0.039 22 -0.023 

5 -0.006 5 -0.118 23 0.245 23 0.394 

6 -0.001 6 -0.131 24 -0.497 24 -0.184 

7 0.001 7 -0.113 25 0.221 25 -0.137 

8 0.006 8 -0.092 26 0.062 26 -0.161 

9 -0.013 9 -0.093 27 -0.072 27 -0.057 

10 0.002 10 -0.091 28 0.034 28 -0.054 

11 0.013 11 -0.069 29 0.003 29 -0.048 

12 0.003 12 -0.043 30 -0.001 30 -0.062 

13 -0.018 13 -0.054 31 0.002 31 -0.053 

14 0 14 -0.064 32 -0.012 32 -0.058 

15 0.007 15 -0.061 33 0.012 33 -0.053 

16 0.001 16 -0.049 34 -0.003 34 -0.056 

17 -0.002 17 -0.042 35 -0.002 35 -0.04 

18 0.002 18 -0.038 36 -0.005 36 -0.033 
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From the correlation graph and table above, one can see i) 

an MA effect in the region of 1st, 2nd and 4th lag ii) a 

substantial MA effect in the region of 24th to 27th lag iii) and 

AR effect in the 23rd and 3rd lag. Given this, many ARMA 

model with different orders can be potentially fitted. Several 

models were fitted to the data and the Table 6 below shows 

a summary statistics for them. As shown in the table, the 

ARIMA (23,(1,24)) has the least Conditional Sum of 

Squares (CSS) and AIC values and hence is the best ARMA 

model for North zone. Q refers to Ljung Box statistics; its 

value is the same for all the models and hence is not really a 

deciding factor here.  

 

Houston Zone 

For Houston zone, as shown in Figure 4 below, there is i)  

an MA effect in the region of 1st and 2nd lag ii) a second MA 

effect in the region of 24th to 26th lag & 29th lag iii) and AR 

effect at 23rd and 25th lag. Again several models of different 

orders were fitted and relevant statistics from the same has 

been summarized in Table 7 below. In this case, ARMA 

(25,(1,24)) was chosen because it has the least CCS 

(16,082,400) and AIC (47,804) values.  

 
Table 6: Comparison of CSS, AIC and Q stat for different models 

for North Zone 
 

 
CSS AIC Q10 Q20 Q30 

ARMA (23, (1, 24)) 17,731,415 48,222 268 271 1,083 

ARMA (23, (1, 2, 24)) 4,768,501,775 70,881 268 271 1,083 

ARMA (23(, 1, 4, 24)) 3.3 E+44 418,699 268 271 1,083 

ARMA (0, (1, 24)) 3.3 E+44 418,699 268 271 1,083 

  

  
 

Fig 4: ACF & PACF plots of Houston zone differenced prices 
 
Table 7: Comparison of CSS, AIC and Q stat for different models 

for Houston Zone 
 

 
CSS AIC Q10 Q20 Q30 

ARMA (25,(1,24)) 16,082,400 47,804 201 247 852 

ARMA (25,(1,2,24)) 19,601,324 48,660 201 247 852 

ARMA (23,(1,24)) 16,365,847 47,878 201 247 852 

ARMA ( 23(,1,2,24)) 20,067,665 48,761 201 247 852 

 

South Zone 

Similarly for South zone, as shown in Figure 5 below, there 

is i) an MA effect in the region of 1st and 2nd lag ii) second 

MA effect in the region of 24th lag iii) and AR effect in the 

22nd and 25th lag. The Table 8 below summarizes the 

relevant statistics and in this case the ARMA (25,(1,2,24)) 

model was chosen. The selection criteria remains the same 

i.e. least CSS and AIC and again Q statistics has no role to 

play here. 

 

  
 

Fig 5: ACF & PACF plots of South zone differenced prices 
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Table 8: Comparison of CSS, AIC and Q stat for different models 

for South Zone 
 

 
CSS AIC Q10 Q20 Q30 

ARMA (25,(1,24)) 31,290,117 50,678 221 310 601 

ARMA (22,(1,24)) 32,441,421 50,833 221 310 601 

ARMA (25,(1,2,24)) 31,102,173 50,654 221 310 601 

ARMA (22, (,1,2,24)) 32,355,047 50,824 221 310 601 

 

The fitted ARMA models for Texas market are different one 

from MISO market because of the very nature of the power 

markets. Texas market is very different from MISO market 

on all fronts: the type and number of generation units are 

different, demand characteristics are different because they 

have different weather patterns, demography and population 

density. Last but not the least, even the network of the 

physical power lines is different in these two markets. Even 

within the Texas market, there are differences in order of 

ARMA model for the three zones, because there are 

significant differences in generation capacity, consumption 

patterns and physical power lines distribution between the 

three zones. So for the three regions, the ARIMA model is 

as follows:  

 

 (1 - B1)(1-B24) Pt = α + βPt-i + ɵ t-j ε t-j + ɵ t-k ε t-k + ε 

 

Where 

 Pt is the hourly power price;  

ε is moving average;  

α is intercept;  

B is the backshift operator;  

β is the autoregressive co-efficient;  

ɵ are the moving average coefficients;  

i, j, k are the time lags and are different for the three zones. 

 

4.3 ARMA Residuals Analysis 

After fitting ARMA model to differenced series, residuals of 

the ARMA model needs to be analyzed. A detailed analysis 

for North zone is presented here but a similar analysis was 

done for all zones.  

For Normality check, a histogram of the residuals of the 

ARMA (23,(1,24)) model was drawn. As shown in Figure 6 

below, the curve is sharply peaked at mean and has very 

thin tails, suggesting that residuals mayn’t be normal. Also, 

upon drawing the Normal Q-Q plot of the residuals, the 

resultant graph doesn’t lie on a 45 degree line and it again 

suggests that the residuals are not normal. Upon doing a 

formal test, Jarque-Bera (JB) yielded a value of 8323160 

which has a Chi-Square distribution with two degrees of 

freedom and is beyond the critical values. The null 

hypothesis is rejected and it confirms that residuals are not 

normal.  

 

  
 

Fig 6: Histogram and Q-Q plot of ARMA (23,(1,24)) residuals for North zone 

 

To do the autocorrelation test, ACF and PACF correlogram 

was generated using ARMA (23,(1,24)) residuals, and as 

shown in Figure 7 below, there are significant lags in the 

region of 1st to 5th lag and 21st and 26th lag. Upon doing a 

formal Box-Ljung (BJ) test with 30 lags, it yielded a value 

of 1082.7; this has a Chi-Square distribution with 30 

degrees of freedom and falls outside the critical values, 

implying that there is autocorrelation in residuals.  

 

  
 

Fig 7: ACF and PACF plot of ARMA (23,(1,24)) residuals for North zone 
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To test for heteroscedasticity, a plot of residuals was drawn 

and as shown in Figure 8 below, residuals are not distributed 

uniformly (in-circled in red) like in case of 

homoscedasticity. This kind of plot suggests that there could 

be heteroscedasticity. To confirm this, a formal test for 

ARCH effect was done with 30 lags; ArchTest yielded a 

value of 875.6 which has a Chi-Square distribution with 30 

degree of freedom and it falls outside the critical values. 

Based upon this, null hypothesis that “there is no ARCH 

effect” is rejected.  

 

 
 

Fig 8: Plot of ARMA (23,(1,24)) residuals for North zone 

 

To further ascertain the presence of heteroscedasticity, a 

plot of the differenced series was drawn and as is evident 

from Figure 9 below, the differenced series depicts ample 

sign of volatility clustering. Given this we need a more 

sophisticated model to model it properly.  

 

 
 

Fig 9: Plot of differenced data for North zone 

 

Similarly, for Houston and South zones, the residuals were 

found to be non-normal and fail the formal Jarque-Bera test. 

The ACF and PACF plots of residuals demonstrate 

significant correlation with distant residuals, fail the formal 

Ljung Box test and confirm presence of autocorrelation. 

Like in north zone, the residual for these zones also, are not 

distributed uniformly, fail the ARCH test which confirms 

that they have heteroscedasticity. Please refer to Appendix 

C for Houston and South zone details. 

 

 

4.4 GARCH Modelling 

Since the differenced series above, exhibits conditional 

heteroscedasticity and raises the possibility of inverse 

leverage effect, it needs to be model by (G)ARCH, because 

these models can handle the serial correlation in volatilities 

very well (Duffie et al., 1998; Escribano et al., 2002; 

Hadsell et al., 2004; Longstaff and Wang, 2004) [11, 12, 13, 14]. 

Although there are many variants of GARCH available, 

Exponential GARCH (EGARCH) is best suited for the job; 

EGARCH has a non-linear form and can accommodate the 

asymmetric time varying volatility and inverse leverage 

effect exhibited by power prices. 

Different orders of EGARCH models were fitted but the one 

with order (1,1) has the maximum MLE and minimum AIC 

as shown in Table 9 below; also this version makes the 

model simpler for interpretation and hence was selected for 

modeling. Besides, there are very minor differences in MLE 

and AIC values for different models across all the three 

zones. 

 
Table 9: Comparison of MLE & AIC values for different orders of 

EGARCH model 
 

  
North Houston South 

EGARCH(1,1) 
MLE -15046.2 -14607.1 -14396.1 

AIC 7.9 7.7 7.6 

EGARCH(1,2) 
MLE -15075.6 -14631.7 -14395.5 

AIC 7.9 7.7 7.6 

EGARCH(2,1) 
MLE -15052.2 -58514.6 -14391.6 

AIC 7.9 30.9 7.6 

EGARCH(2,2) 
MLE -15049.8 -14609.6 -14396.1 

AIC 7.9 7.7 7.6 

 

The specification of an EGARCH (1,1) model is as follows: 

 

Log (ht
2) = ω + λ |εt-1/ (ht-1)0.5 |+ γ {εt-1/ (ht-1)0.5} + ɸ log ht-1

2  

 

where  

ht
2 is the volatility of the ARMA residuals. Gamma (γ) 

captures the leverage effect (Bunn & Karakatsani, 2003; 

Knittel and Roberts, 2005) and is representative of 

asymmetric effects in response to shocks. If γ is greater than 

zero, it indicates presence of an inverse leverage effect, 

when it is less than zero it indicates the leverage effect and 

when it is zero, the impact on volatility is same for both 

negative and positive shocks. Omega (ω) is the mean of the 

volatility equation; Lamda (λ) represents the size effect 

which indicates how much volatility increases irrespective 

of the direction of the shock. The last term ɸ indicates the 

degree of volatility persistence.  

Ideally, the ARMA and EGARCH fitting should have been 

fitted in one step only but because of limitations of R, it 

couldn’t be done in one step. For purposes for this paper, 

this was carried out in two steps. In first step, only the 

ARMA model was fitted (step 4.2) and in second step, the 

residuals of the ARMA model were fitted into EGARCH 

(1,1) model. 

 

4.5 GARCH Model Residual analysis 
A subsequent analysis of the residuals was undertaken to 

ensure that they are indeed white noise. When a formal 

ARCH test was done on the residuals to detect 

heteroscedasticity, it yielded a value of 1.5 (North zone) 
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which is within the critical limits and confirmed that there is 

no ARCH effect in the residuals. The Q statistics from 

Ljung Box test yielded a value of 35.98 (North zone) and is 

again within the Chi Square critical limits; the null 

hypothesis couldn`t be rejected implying there is no 

autocorrelation in the residuals. Additionally, the ACF & 

PACF correlogram of the residuals is similar to that of white 

noise and suggest that residuals are not correlated shown in 

Figure 10 below (North zone). Please refer to Appendix D 

for details of these tests. 

  

  
 

Fig 10: ACF and PACF correlogram of GARCH (1,1) residuals for North zone 

 

4.6 Analysis of Coefficients: 

The Table 10 below, consolidates the ARMA coefficients 

for the three zones. The first row shows the estimated value 

and the second shows standard error. 

All the ARMA co-efficients (excluding the intercepts) have 

high t statistics; the null hypothesis that they are zero is 

rejected implying that these coefficients are statistically 

significant at 0.1% level. Although, the intercept is not 

significant, but even then it has been included because the 

CSS and AIC values for models with constant is smaller 

than for those without constant. For North zone, MA1 term 

has the highest value (-0.653), implying that prices in prior 

hour has the highest periodicity. While for the Houston and 

South zones, the MA24 term has the highest value (-0.929 

for Houston and -0.946 for South Zone), implying that in 

these zones, periodicity with prices 24 hours back is the 

highest. This makes sense intuitively also: North zone has 

almost 70% of generation units for whole of Texas, so in 

this zone “Supply” plays the pivotal role in price 

determination. Since most of these plants are baseline units - 

which generate a constant amount of power 24X7- the 

supply is almost the same between two successive hours and 

hence prices are high correlated with prior hour prices. 

While South and Houston zones are more of “Load Zones” 

with far fewer generation capacities. These areas are also 

densely populated, have higher demand for power and hence 

demand plays a pivotal role in price determination. Since 

the hourly demand / load is almost the same 24 hours apart, 

prices in these zones are strongly correlated with prices 24 

hours back. Invertibility conditions are satisfied for Houston 

and South zones but not for the North zone.  

Similar to mean equation, all the co-efficients of variance 

equation - as shown in Table 11 below - also have high t 

statistics and so the null hypothesis that they are zero is 

rejected. The sign of gamma term is positive and is 

statistically significant at 0.1% level and so it confirms the 

presence of inverse leverage effect in all the three zones. 

Table 10: Consolidated ARMA coefficients for North, Houston 

and south zones 
 

  
North Houston South 

AR23 
Coefficient -0.078 

  
Std Error 0.015 

  

MA1 
Coefficient -0.653 -0.064 -0.027 

Std Error 0.032 0.013 0.006 

MA24 
Coefficient -0.301 -0.929 -0.946 

Std Error 0.036 0.010 0.007 

AR25 
Coefficient 

 
0.169 0.216 

Std Error 
 

0.019 0.016 

MA2 
Coefficient 

  
-0.030 

Std Error 
  

0.006 

Intercept 
Coefficient -0.067 -0.000 -0.001 

Std Error 
 

0.057 0.013 0.009 

 

So, given a positive shock to volatility, the prices will 

increase more, than in case of negative shock to volatility. 

Intuitively, when there is an increase in demand, generators 

with higher marginal costs are required to turn on their 

power plants, these plants set the LMP and hence market 

witnesses higher volatility. Also, this effect is highest in 

case of South zone (1.90), followed by Houston zone (1.89) 

and then by North Zone (0.995). Again, intuitively it makes 

sense: the physical power lines between North to South zone 

and North to Houston zone, have relatively lower capacity 

and these lines get congested during peak hours. Hence any 

positive shock - increase in demand in south or Houston 

zone - will shoot up the price in these zones and hence a 

significant impact on volatility. The size effect is negative 

and is also statistically significant at 0.1% level. The impact 

of shock is highest in Houston (-1.05) and South (-1.00) 

zones and relatively lower in North zone (-0.27) for the 

reasons mentioned above. The degree of volatility 

persistence (Chi) is positive, varies from 0.472 for South 

zone to 0.736 for North zone and is statistically significant 

at 0.1% level. Since all the coefficients are highly 

significant, it implies that volatility is time varying. These 
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statistics combined together very elegantly explain the 

various characteristics of volatility exhibited by power 

prices and confirm that volatility is time varying, non-linear, 

asymmetric and that it exhibits an inverse leverage effect 

even in Texas market. These results are consistent with 

those of Bowden & Payne, 2008;  

 
Table 11: Consolidated EGARCH coefficients for North, Houston 

and South zones 
 

  
North Houston South 

Omega 
Coefficient 1.828 3.413 3.471 

Std Error 0.194 0.192 0.215 

Lamda 
Coefficient -0.269 -1.050 -1.001 

Std Error 0.055 0.067 0.069 

Gamma 
Coefficient 0.955 1.894 1.904 

Std Error 0.157 0.085 0.091 

Shi 
Coefficient 0.736 0.486 0.472 

Std Error 0.030 0.028 0.032 

 

5. Forecasting and Model Evaluation 

After the model has been developed, it was used to forecast 

the prices for first week of July i.e. from 1st July 2009 to 7th 

July 2009. Four forecast evaluation statistics were used to 

measure the prediction accuracy: Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), Root 

Mean Squared Error(RMSE), and Theil Enequality 

Coefficient (TEC). Since RMSE and the MAE statistics 

depend on the scale of the variable, it is best suited when 

comparing the forecast of same variables across different 

models, nevertheless they have been used here. But MAPE 

and the TIC are insensitive to the scale of the variable and 

hence are better to evaluate the performance of this model. 

For all these statistics, smaller the value, the better the 

prediction is from the model.  

 

Mean Absolute Error (MAE):  

 

Mean Absolute percentage error (MAPE):  

 

[  ] x 100 

 

Root Mean Squared error (RMSE):  

 

 

 

Theil Inequality Coefficient (TIC):  

 

 
 

Where 

p1 = ṕt
j forecasted price in period t, at h horizon & p2 = pt

j 

actual price in t period at h horizon. 

Table 12 below summarizes the forecast evaluation statistics 

for the models for the three zones. While the TIC varies 

within a narrow range of 0.17 to 0.26, MAPE has a range of 

19.6 to 20.8 These statistics indicate that the model works 

best for North zone; the ones for Houston and South zones 

are almost the same.  

 
Table 12: Out of sample model forecasting performance for North, 

Houston and South zones 
 

 
North Houston South 

MAE 11.8 13.6 12.1 

MAPE 19.6 21.6 20.8 

RMSE 20.9 23.4 24.7 

TIC 0.17 0.24 0.26 

 

6. Conclusion 

In light of the above analysis, it can be concluded that the 

ARIMA-EGARCH model developed for Texas market is a 

robust one and can be used to forecasting short term prices. 

These forecasted prices in turn can be used to place bids in 

the hourly day-ahead market or take speculative positions. 

The above analysis also confirms that power prices in Texas 

market exhibits time-varying volatility because of non-

storability of power and convex marginal cost. Not only is 

this volatility time varying but it is also asymmetric to 

shocks, meaning the positive and negative shocks will have 

different impact on volatility. Because of the positive sign 

of gamma in variance equation, the impact of positive shock 

is greater than the negative ones and confirms the presence 

of inverse leverage effect.  
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Appendix A: Results for preliminary analysis of raw power prices 

North Zone: Power prices plot 

 

 

ACF and PACF plots 

 

  
 

Houston Zone: Power prices plot 

 

 
 

ACF and PACF plots
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South Zone: Power prices plot 

 

 
 

ACF and PACF plots 

 

  
 

Appendix B: Results for analysis of differenced (stationary) data 

North Zone: ACF and PACF plots 
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Houston Zone: ACF and PACF plots 

 

  
 

South Zone: ACF and PACF plots 

 

  
 

Appendix C: Results from analysis of ARIMA residuals 

North Zone: Histogram and Q-Q Plot 
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ACF and PACF plots 

 

  
 

Residual plot for Heteroscedasticity and differenced data plot for volatility tests 

 

  
 

Houston Zone: Histogram and Q-Q plot 
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ACF and PACF plots 

 

  
 

Residual plot for Heteroscedasticity and differenced data plot for volatility tests 

 

  
 

South Zone: Histogram and Q-Q plot 
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ACF and PACF plots 

 

  
 

  
 

Residual plot for Heteroscedasticity and differenced data plot for volatility tests  

 

Summary of Normality, Autocorrelation and ARCH test 
 

 
North Houston South 

Jarque–Bera 8323160 699465 7033280 

Ljung - Box (30 lags) 1082.7 852.3 418.6 

ARCH (30 lags) 875.6 1110.3 680.8 

 

Appendix D: Results from analysis of GARCH residuals 

North Zone: ACF and PACF plots 

http://www.allfinancejournal.com/


 

International Journal of Research in Finance and Management  http://www.allfinancejournal.com 

~ 126 ~ 

  
 

Houston Zone: ACF and PACF plots 
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