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Abstract 

Financial markets are highly volatile during crises and regime shifts, challenging the efficacy of 

traditional static portfolio allocation methods. This study explores whether machine learning (ML) 

techniques can enhance dynamic asset allocation in volatile U.S. markets. We investigate the 

adaptability of ML models—such as deep reinforcement learning (DRL), neural networks, and random 

forest ensembles—in comparison to conventional methods like Markowitz mean-variance and Black-

Litterman models. Drawing from recent literature, we highlight how ML strategies can capture 

nonlinear patterns and adjust in real time to changing market conditions. Our methodology trains ML 

models on extensive U.S. market data (2007-2022), including equity indices, bonds, and volatility 

measures. The goal is to maximize risk-adjusted returns while mitigating drawdowns. Empirical results 

show that ML-based portfolios outperform static benchmarks across key performance metrics. Notably, 

the DRL agent reduced equity exposure ahead of volatility spikes, achieving higher Sharpe ratios and 

smaller drawdowns. These findings support the potential of AI-driven strategies to adapt during 

turbulent periods and generate superior returns. We conclude by discussing the practical implications 

for investors, the need for robust validation, and future research on integrating explainable AI with 

financial theory. Overall, ML offers a powerful tool for dynamic portfolio optimization in increasingly 

uncertain financial environments. 
 

Keyword: Portfolio optimization, machine learning, volatile markets, reinforcement learning, dynamic 

asset allocation, volatility forecasting, markowitz; black-litterman, u.s. market 
 

Introduction 

Financial markets are inherently volatile, with asset prices influenced by macroeconomic 

events, geopolitical tensions, and shocks such as financial crises. Periods of high market 

volatility pose a serious challenge to investors: correlations between assets can spike and 

historical relationships break down, undermining static diversification strategies. Traditional 

portfolio allocation methods, rooted in Modern Portfolio Theory (MPT), typically assume a 

fixed risk-return profile - for example, Markowitz’s 1952 [2] mean-variance optimization 

framework seeks an optimal static mix of assets given expected returns and covariance 

estimates. Similarly, the Black-Litterman model improves on Markowitz by incorporating 

investors’ subjective views with a Bayesian adjustment to the market equilibrium returns. 

While these approaches have been foundational, they often rely on static models and 

historical correlations that may not adequately capture the complexities of modern markets, 

especially during regime changes or crises. In a rapidly changing environment - such as the 

2008 global financial crisis or the March 2020 pandemic-induced crash - static allocations 

can suffer large drawdowns because they fail to adjust to new market dynamics in real time. 

Recent research and practical experience highlight the need for adaptive strategies that can 

dynamically shift portfolio exposures in response to market volatility. For instance, 

volatility-targeting and managed portfolios have demonstrated that reducing risk exposure 

when volatility is high can substantially improve performance.  

https://www.allfinancejournal.com/
https://www.doi.org/10.33545/26175754.2025.v8.i1d.451


 

International Journal of Research in Finance and Management  https://www.allfinancejournal.com 

~ 321 ~ 

Moreira and Muir (2017) [4] show that portfolios which take 

less risk during high-volatility periods achieve higher 

Sharpe ratios and large abnormal returns (alphas) relative to 

static benchmarks. This suggests that systematically 

adapting to volatility - even with simple rules - adds value. 

However, manually designing such rules or relying on a few 

financial indicators may not capture the full complexity of 

market behavior. Machine Learning (ML) offers a 

promising avenue to learn adaptive allocation rules from 

data. ML algorithms can ingest vast amounts of financial 

data (price histories, technical indicators, macroeconomic 

variables) and identify complex nonlinear patterns or regime 

shifts that human-designed strategies might miss. Crucially, 

ML models can update their decisions as new data arrives, 

enabling a form of real-time learning and adaptation to 

changing market conditions. 

This research explores an AI-driven adaptive asset 

allocation approach for dynamic portfolio optimization in 

volatile markets, with a focus on the U.S. market. We aim to 

fill the gap between traditional financial models and modern 

machine learning techniques in the context of portfolio 

management under uncertainty. By leveraging ML - 

including deep learning and reinforcement learning - we 

seek to dynamically adjust portfolio weights in anticipation 

of or reaction to volatility spikes. The overarching 

hypothesis is that ML models can improve portfolio 

performance and risk management during turbulent periods 

by recognizing early warning signs of regime changes (e.g., 

rising volatility, changing correlations, macroeconomic 

stress) and altering allocations accordingly. Empirical 

evidence is beginning to support this view: in portfolio 

hedging applications, AI models (using techniques like 

neural networks and reinforcement learning) have been 

shown to improve risk prediction and enhance stability, 

significantly reducing portfolio risk during volatile market 

episodes. 

To structure our investigation, we pose the following 

research questions: 

1. Can machine learning models dynamically adjust 

portfolio allocations in response to high market 

volatility to improve risk-adjusted returns compared to 

static allocation methods? 

2. Which ML techniques (e.g., deep reinforcement 

learning, neural networks, tree-based ensembles) are 

most effective at optimizing portfolios under volatile 

market conditions, and how do their strategies differ? 

3. How do AI-driven adaptive portfolios perform relative 

to traditional allocation approaches (such as Markowitz 

mean-variance optimization and Black-Litterman) 

during periods of market stress in the U.S. market? 

4. What market signals or features (e.g., volatility indices, 

momentum indicators, macroeconomic data) do the ML 

models leverage to trigger allocation changes, and what 

does this imply about managing portfolios in practice? 

 

By addressing these questions, our goal is to provide a 

comprehensive assessment of the potential of AI/ML in 

dynamic portfolio optimization. We focus on the U.S. 

market for concreteness, using data from major indices and 

asset classes, but the insights are broadly applicable to 

global markets. In what follows, we first review the relevant 

literature on AI-driven portfolio management, volatility 

modeling, and adaptive investment strategies (Section 

Literature Review). We then detail our methodological 

framework (Section Methodology), including the ML 

models employed and the dataset construction (Section 

Data). Next, we present the experimental results and 

analysis (Section Results and Discussion), comparing ML-

based strategies to traditional baselines. Finally, we 

conclude with a summary of findings, implications for 

investors and academics, and suggestions for future research 

(Section Conclusion). 

 

Literature Review 

Traditional Portfolio Optimization and Limitations: The 

classical approach to portfolio allocation is grounded in 

Harry Markowitz’s Modern Portfolio Theory, which 

formalized the risk-return tradeoff and introduced mean-

variance optimization. In Markowitz’s framework, an 

investor selects asset weights to maximize expected return 

for a given level of variance (risk), based on estimates of 

each asset’s mean return and the covariance matrix. While 

Markowitz’s model inaugurated quantitative portfolio 

management, it assumes stationary inputs and typically 

yields a fixed allocation until rebalancing occurs. In 

practice, implementing Markowitz requires forecasting 

returns and covariances - a notoriously difficult task - and 

the optimizer can be very sensitive to estimation errors. The 

Black-Litterman model (Black & Litterman, 1992) [3] sought 

to improve robustness by blending the investor’s subjective 

return views with a CAPM equilibrium prior, effectively 

producing a Bayesian-adjusted expected return vector for 

use in mean-variance optimization. Black-Litterman helps 

mitigate extreme portfolio weights and incorporates external 

information, yet it still often results in a static allocation 

policy unless the investor’s views are frequently updated. 

A critical shortcoming of these traditional models is that 

they do not explicitly account for time-varying market 

conditions. They presume a more or less stable distribution 

of returns (or, at best, adapt slowly via periodic re-

estimation). During quiet market regimes, a static 60/40 

equity-bond portfolio or a risk-parity allocation might 

perform adequately. But during volatile regimes, such static 

allocations can falter. Historical evidence shows that 

correlations between risky assets tend to converge to 1 in 

crises, and volatilities surge, meaning that a previously 

“optimal” mix can suddenly become far from optimal. For 

example, a static diversified portfolio that worked in normal 

times would have suffered large synchronized losses in 

October 2008 or March 2020. This realization has spurred 

interest in dynamic or adaptive strategies. Even before the 

rise of AI, researchers proposed methods like regime-

switching models (to adjust allocations when markets enter 

a different state), tactical asset allocation (frequently 

adjusting weights based on indicators or forecasts), and 

volatility-targeting. The latter, in particular, has gained 

traction: by scaling portfolio exposure inversely with 

trailing volatility, one can stabilize risk over time. Moreira 

and Muir (2017) [4] demonstrated that such volatility-

managed portfolios produced higher Sharpe ratios and 

significant alphas relative to static benchmarks. This 

highlights that dynamic risk management adds value - a 

notion central to our investigation. 

Machine Learning in Portfolio Management: With 
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advances in computing and data availability, machine 

learning techniques have increasingly been applied to 

portfolio decision-making. ML algorithms can learn 

complex mappings from input features to outputs without 

being explicitly programmed, which is advantageous in 

finance where relationships can be nonlinear and regime-

dependent. Early applications in the 1990s and 2000s used 

techniques like genetic algorithms or neural networks to 

enhance portfolio selection and trading strategies. However, 

it is in the last decade that ML in portfolio management has 

truly flourished, thanks to deep learning and reinforcement 

learning (RL)breakthroughs. ML methods can be broadly 

divided into: (1) Supervised learning approaches for 

predicting asset returns, risks, or classification of market 

regimes; and (2) Reinforcement learning approaches for 

directly making sequential investment decisions. 

Several studies have reported promising results from ML-

based portfolio strategies. For example, deep neural 

networks (including recurrent architectures like LSTM) 

have been used to forecast asset returns and volatilities, 

feeding these into a forward-looking allocation model. Li et 

al. (2019) [5] present an LSTM-based adaptive asset 

allocation system that ingests historical prices, 

macroeconomic data, and technical indicators (via feature 

reduction) to predict each asset’s next-period return and risk

. These predictions are then plugged into a mean-variance 

optimizer to determine portfolio weights. In their global 

multi-asset experiment, the LSTM-driven strategy achieved 

an annualized Sharpe ratio of ~0.98, roughly double that of 

traditional passive portfolios (Sharpe ~0.46-0.54). This 

underscores how ML can improve performance by 

providing better forward-looking estimates than simple 

historical averages. Another deep learning example is the 

work of Jiang et al. (2020) [7], who integrated ML 

predictions with a portfolio rebalancing framework using 

risk-aversion adjustments. They compared six portfolio 

strategies and found that those using ML models (e.g. 

logistic regression and XGBoost to predict market trends) 

had superior out-of-sample performance - higher average 

returns and cumulative returns - compared to four 

benchmarks including the S&P 500 index and a minimum-

variance portfolio. In particular, the ML-integrated 

portfolios clearly dominated the S&P 500 and static 

minimum-variance strategy after the 2008 crisis, indicating 

more agile adaptation to market changes. Reinforcement 

learning (RL) has emerged as a powerful paradigm for 

portfolio optimization because it naturally handles 

sequential decision-making and delayed rewards. In an RL 

framework, an “agent” learns a policy for reallocating the 

portfolio by interacting with the market environment (often 

simulated with historical data): at each time step, it observes 

state features (e.g. recent returns, volatility, indicators) and 

chooses an action (asset weight allocation), then receives a 

reward (e.g. portfolio return or utility). Over time, the agent 

learns policies that maximize cumulative reward. Pioneering 

work by Moody and Saffell (1999) and subsequent 

researchers applied RL to manage single assets or simple 

portfolios. More recently, deep reinforcement learning has 

been applied to multi-asset portfolios with notable success. 

For instance, Deep Q-Networks (DQN) and Policy Gradient 

methods (like DDPG) have been used to train trading agents 

that adjust portfolio weights continuously. These agents 

have shown the ability to outperform traditional strategies in 

terms of returns and volatility. A challenge noted in RL 

studies is that an agent trained in one market regime (say, a 

long bull market) may struggle if deployed in a different 

regime (e.g., a bear market) . To address this, researchers 

incorporate techniques like ensemble learning (multiple 

agents) or regime detection into the RL framework. Recent 

work by Yan et al. (2024) [8] introduced a Deep Portfolio 

Optimization (DPO) framework combining deep learning 

for feature extraction with reinforcement learning for 

decision making. Their DPO agent uses a novel reward 

function that balances returns, risk, and transaction costs. In 

tests on real financial data, the DPO approach achieved the 

highest cumulative portfolio value and Sharpe ratio 

compared to various benchmark strategies, while also 

maintaining a low maximum drawdown. Such results 

reinforce the view that RL-based strategies can adaptively 

trade off risk and return more effectively than static 

optimization. 

Tree-based Ensemble Methods have also been explored for 

portfolio allocation. Unlike deep learning and RL, which 

often operate as black boxes, tree-based models (like 

Random Forests and Gradient Boosted Trees) can be more 

interpretable and handle smaller datasets well. These models 

can be used to predict aspects of asset behavior - for 

example, forecasting the probability an asset’s return will be 

positive next month, or predicting volatility - which then 

inform allocation decisions. Pinelis and Ruppert (2021) [9] 

applied Random Forests to dynamically allocate between 

the S&P 500 and a risk-free asset. In their approach, one 

Random Forest predicts the sign of the market’s excess 

return (using features like dividend yield and macro 

variables), while another predicts the market volatility. 

Based on these forecasts, they adjusted the portfolio’s 

exposure to equities (taking more risk when the outlook was 

favorable, and de-risking when forecasts were poor). They 

reported economically and statistically significant gains 

from ML-based timing: the ML strategy delivered higher 

utility for an investor, improved risk-adjusted returns, and 

substantially lower drawdowns than a buy-and-hold strategy

. This highlights that even relatively simpler ML models 

(compared to deep neural nets) can capture predictive 

signals that enhance portfolio allocation - effectively 

performing “return timing” and “volatility timing” 

simultaneously. 

 

Volatility Forecasting and Adaptive Risk Management: 

A crucial element in adaptive allocation is volatility 

forecasting and regime identification. Traditional models 

like GARCH have long been used to forecast volatility, but 

ML techniques (such as hybrid neural network models or 

Support Vector Regression) are now being used to improve 

volatility forecasts. Better volatility forecasts can directly 

feed into allocation decisions (for instance, scaling positions 

inversely to predicted volatility, as in volatility-targeting). 

Recent studies in volatility-timing strategies show that using 

ML to predict volatility can lead to superior performance. 

Chun et al. (2024) [6] develop a machine learning approach 

to forecast market volatility and dynamically adjust 

portfolio risk exposure; their volatility-timed strategy 

outperforms static ones in terms of Sharpe ratio and 

drawdown control (as reported in Research in International 
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Business and Finance). These works align with the 

observation that AI-based systems can process high-

dimensional inputs and detect subtle shifts in market risk 

that simpler methods might overlook. 

Another dimension is adaptive hedging. Pum (2022) [1] 

examined AI-driven techniques for portfolio hedging in 

volatile markets, emphasizing methods like reinforcement 

learning and sentiment analysis to manage downside risk. 

The findings indicate that AI-powered hedging strategies 

significantly reduced risk exposure and improved stability 

during volatile periods compared to traditional hedges. This 

implies that an ML model can learn to activate protective 

positions (such as increasing bond or cash allocation, or 

using derivatives) at the right times. 

Summary of Insights from Literature: Across the spectrum 

of recent research, a common theme is that adaptive, data-

driven approaches tend to outperform static allocations in 

terms of return and risk metrics, especially in out-of-sample 

tests that include volatile periods. ML models - whether 

deep networks, tree ensembles, or RL agents - offer 

flexibility in modeling complex relationships and can update 

decisions as new information arrives. Nonlinear patterns, 

such as those involving interactions of technical indicators 

or the joint behavior of many assets, can be captured by ML 

where linear models fail. Moreover, ML approaches can 

simultaneously consider a large number of features (returns, 

volatilities, macro indicators, sentiments, etc.), whereas 

traditional models might only incorporate a few variables. 

This capability is vital in volatile markets, where triggers for 

regime shifts may be multi-faceted. 

However, the literature also cautions about pitfalls. ML 

models can overfit to historical data, learning patterns that 

won’t repeat. They also often act as “black boxes,” making 

it hard for portfolio managers to trust and understand their 

decisions. Some authors call for combining ML with 

financial theory - for example, Yan et al. (2024) [8] explicitly 

integrate MPT constraints into a deep RL framework to 

retain theoretical soundness. Others have suggested robust 

ML approaches that impose stability (perhaps through 

regularization or by averaging ensembles of models). The 

consensus is that while ML shows great promise, careful 

design and validation are needed for real-world adoption. 

This study builds on these insights, aiming to contribute a 

comparative evaluation of different ML techniques in a 

unified portfolio setting, and to shed light on how they 

manage volatility. In the next section, we describe our 

methodology, which draws inspiration from the literature - 

incorporating deep learning prediction models, an RL agent, 

and an ensemble method - and sets up a head-to-head 

comparison with traditional methods like Markowitz and 

Black-Litterman. 

 

Methodology 

To address our research questions, we design a methodology 

that involves developing and testing multiple portfolio 

optimization models, both ML-driven and traditional. We 

focus on three state-of-the-art ML approaches for dynamic 

asset allocation: (i) a deep reinforcement learning agent, (ii) 

a deep neural network model, and (iii) a tree-based 

ensemble model. These were chosen to represent the most 

widely used paradigms in AI for finance - each approach 

has different strengths in learning and decision-making. We 

compare their performance against two traditional 

strategies: Markowitz mean-variance optimization (with 

rolling parameter estimates) and Black-Litterman (using a 

U.S. market prior and no active views, as a baseline). All 

strategies operate on the same dataset and are evaluated 

under identical conditions. 

 

Portfolio and Assets: We consider a portfolio of three asset 

classes representative of a typical U.S. investor’s 

opportunity set: (1) U.S. Equities - proxied by the S&P 500 

index (large-cap stocks) and the Nasdaq Composite index 

(tech- and growth-oriented stocks), (2) U.S. Treasury Bonds 

- proxied by a 20+ Year Treasury bond index (or ETF), and 

(3) Cash or a risk-free asset - proxied by 3-month T-bills 

(yield data). This mix allows allocation between risky assets 

(equities), a defensive asset (Treasuries, which typically 

rally in equity downturns historically), and cash. In practice, 

we implement the equity portion as a combined allocation to 

S&P and Nasdaq (treating them as separate assets to allow 

the model to differentiate between, say, a broad market 

downturn and a tech-specific downturn). The inclusion of 

two equity indices introduces some intra-asset class 

diversification and lets the models potentially overweight 

one versus the other if it detects different patterns (e.g., tech 

sector volatility). The bond asset provides a typical hedge in 

portfolios. We acknowledge that 2022 was an unusual year 

when stocks and bonds fell together due to rising interest 

rates - making it a good stress test for our adaptive 

strategies. 

 

Data Frequency and Horizon: We use daily price data for 

all assets to capture volatility and short-term dynamics, but 

our models will operate on a monthly rebalancing schedule 

(i.e., portfolio weights are adjusted monthly). Monthly 

rebalancing strikes a balance between responsiveness to 

market changes and limiting excessive turnover (which can 

incur trading costs). Many adaptive allocation strategies in 

practice (e.g., global tactical asset allocation funds) 

rebalance monthly or quarterly. Using daily data, we can 

derive rich features (like volatility measures) for the models, 

and also evaluate intra-month performance. The overall 

sample covers January 2007 through December 2022, about 

16 years including multiple market regimes: the pre-2008 

bull market, the 2008 crisis (extreme volatility), the post-

crisis recovery, the 2011 and 2015 volatility spikes, the long 

bull market of 2010s, the 2020 crash and rebound, and the 

inflation-driven volatile period of 2022. We reserve the last 

several years as an out-of-sample test set, training models 

on earlier data, to evaluate how well the strategies 

generalize to new conditions. 

 

Feature Construction: A crucial part of our methodology 

is constructing input features that the ML models can use to 

gauge market conditions. Based on financial domain 

knowledge and prior literature, we include features that 

capture momentum, mean-reversion, volatility, and 

macroeconomic cues: 

▪ Recent Returns (Momentum/Trend): We compute 

trailing returns over different windows (e.g., 1-month, 

3-month, 6-month) for each asset. These features allow 

models to detect momentum (positive or negative) or 

mean-reversion patterns. For example, a sharp negative 
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1-month return might indicate a downturn; sustained 6-

month momentum might indicate a trend. 

▪ Volatility Measures: We compute realized volatility of 

the S&P 500 (and other assets) over the past 1-3 months 

(e.g., standard deviation of daily returns over the last 60 

trading days). We also include the VIX index level 

(CBOE Volatility Index, which reflects implied 

volatility on S&P 500 options) as a feature at the 

monthly frequency. The VIX is often called the “fear 

index” and tends to spike during market turmoil, 

providing an forward-looking gauge of volatility. High 

recent volatility or a high VIX reading suggests caution 

(reduce risky asset exposure). 

▪ Market Valuation/Yield Measures: Although our 

focus is on volatility and trend, we also consider 

including a valuation metric like the dividend yield or 

earnings yield of the S&P 500, which longer-term asset 

allocation models often use. In this study, to keep the 

feature set tractable, we primarily use technical features 

(returns and volatilities) and one key macro indicator 

(VIX). More advanced models could ingest interest 

rates, credit spreads, etc., but our aim is to illustrate the 

approach with core features. 

 

These features are updated each month with the latest data. 

For the supervised learning models (neural network and 

random forest), the feature vector at the end of month t is 

used to predict returns or risks for month t+1. For the 

reinforcement learning model, features constitute the “state” 

input at each time step, informing the agent’s action. 

 

Machine Learning Models: 

1. Deep Neural Network (Supervised Learning) - 

Return Prediction Model: We implement a deep feed-

forward neural network (DNN) that takes the feature 

vector (momentum, volatility, etc.) at time t and outputs 

a prediction of the next-month returns for each asset 

(S&P, Nasdaq, and Treasuries). This is a multi-output 

regression problem. Our network architecture has an 

input layer corresponding to the number of features 

(roughly 10 features in our case), one or two hidden 

layers with ReLU activation, and an output layer with 3 

neurons (one per asset’s predicted return). We train the 

network on historical data from 2007 up to 

(approximately) 2015, validating on 2016-2017, and 

then use it to predict out-of-sample for 2018-2022. The 

loss function is mean squared error (MSE) between 

predicted and actual returns. We also experiment with 

predicting the volatility of each asset (or the portfolio) 

as a separate output or using a secondary model, as 

better risk prediction could improve allocation. 

However, for simplicity, the main DNN focuses on 

return prediction, and we rely on recent realized 

covariances for risk estimation. 

Once the DNN provides predicted returns 

$\hat{r}{t+1}$ for each asset at month t, we feed these 

into a portfolio optimizer. Specifically, we use a mean-

variance optimization at each rebalance: maximize 

$\mathbf{w}^T \hat{\mathbf{r}}{t+1} - \lambda 

\mathbf{w}^T \Sigma_t \mathbf{w}$ subject to $\sum 

w_i = 1$ and $w_i \ge 0$. Here $\Sigma_t$ is the 

forecast covariance matrix for next month’s returns - 

we approximate this by the sample covariance of 

returns over the recent past (e.g., last 36 months). We 

choose a risk-aversion parameter $\lambda$ such that 

the ex-ante volatility of the solution is in a reasonable 

range (around 10-15% annualized). In practice, we 

solve this quadratic program with non-negativity via a 

numerical solver or iterative algorithm. The result is the 

DNN-based portfolio weight vector for that month. This 

approach blends ML prediction with optimization, 

similar in spirit to the works that use ML forecasts as 

inputs to Markowitz. It retains some theoretical 

grounding (the optimizer ensures we consider risk) 

while leveraging ML for better return estimates. 

2. Deep Reinforcement Learning (RL): Policy 

Optimization Model: Our second approach is model-

free reinforcement learning, wherein an agent learns an 

allocation policy $\pi(\text{state}) = \text{action}$. 

The agent’s state at time t includes the same features 

described earlier (recent returns, volatilities, VIX, etc.), 

and possibly the current portfolio weights (though we 

restrict actions to be fully decided by the agent to avoid 

trivial persistence). The action is the new portfolio 

weight allocation $(w_{S&P}, w_{Nasdaq}, 

w_{Treasury})$ for the next period (with $w_i \ge 0$, 

$\sum w_i=1$). We discretize the action space for the 

learning algorithm to simplify - for example, each 

weight in increments of 0.1 that sum to 1 (this still 

yields a large action space, so we might restrict it 

further, e.g. only vary equity/bond split in increments). 

The reward at each time step is defined to encourage 

high returns and low risk. A common choice is the 

Sharpe ratio or log utility. We define reward $R_{t} = 

\text{Portfolio Return}{t} - \eta \times \text{Portfolio 

Risk}{t}$, where portfolio return is the weighted sum of 

asset returns in month $t$, and risk can be a penalty 

term (e.g., squared volatility or drawdown). In our 

implementation, we use reward = portfolio log return 

(which naturally penalizes volatility due to 

compounding) or include an explicit risk penalty. The 

agent experiences a sequence of states and rewards over 

the training period (say 2007-2015). We employ a 

policy-gradient method (such as Deep Deterministic 

Policy Gradient (DDPG) for continuous action or a 

discrete action deep Q-learning if we quantize actions) 

to update the policy network. The policy network can 

be a small neural net that outputs the allocation given 

state inputs. We also experiment with an Actor-

Criticalgorithm where a critic network estimates the 

value of states, improving training stability. 

The RL training is done by repeatedly simulating the 

agent over the historical data (with random start points 

or randomized mini-batches to augment experience). 

We use techniques like $\epsilon$-greedy exploration 

or entropy regularization to ensure the agent explores 

various allocation patterns. The result of training is a 

policy that we then fix and test on the out-of-sample 

period (2016-2022). This policy essentially encodes an 

adaptive trading strategy- for example, the agent might 

have learned rules akin to “if VIX is very high and 

recent returns are deeply negative, shift most funds to 

Treasuries (safe asset); if market is trending up and 

volatility is low, allocate heavily to equities,” etc., but 
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in a nonlinear way based on its network. 

We expect the RL agent to potentially capture patterns 

that a one-period optimizer might miss, because it 

considers the impact of current actions on future 

rewards (sequential dependence). For instance, an RL 

agent could learn to de-risk before an anticipated 

volatility spike to avoid losses, even if that means 

slightly lower immediate returns, because it is 

maximizing long-run wealth. This kind of behavior 

would be difficult to hard-code but can emerge from 

learning. Indeed, prior studies have found that RL 

agents can develop tactical allocation timing that 

outperforms static models. We will analyze the learned 

policy’s behavior to the extent possible to interpret its 

strategy. 

3. Tree-Based Ensemble - Random Forest Classifier 

for Regime and Allocation: The third ML approach 

uses a Random Forest (RF), which is an ensemble of 

decision trees, to predict the next period’s market 

regime or directly the optimal allocation. We consider 

two formulations: (a) an RF regression similar to the 

DNN, predicting next-month returns of each asset (and 

then feeding to optimizer); or (b) an RF classifier that 

predicts a discrete allocation or adjustment. We found 

that predicting exact returns is challenging for tree 

models given limited data, so we lean towards a simpler 

predictive task: predicting whether equities will 

outperform the bond or not in the next month (a binary 

classification). Essentially, the RF tries to classify 

“risk-on” vs “risk-off” regimes for the next period. The 

features are the same set (recent returns, volatility, VIX, 

etc.). The model is trained on historical instances 

labeled, for example, 1 if $(\text {Equity Index Return} 

- \text {Bond Return}) > 0$ next month (stocks 

outperformed bonds), or 0 if vice versa. This label 

encapsulates a broad regime signal - if the model 

predicts 1, it favors equities (risk-on); if 0, favor bonds 

(risk-off). We also train a second RF to predict how 

much equities might outperform bonds (to gauge 

confidence). In practice, the RF yields a probability $p$ 

of risk-on. We can translate this into a portfolio weight: 

for instance, allocate $w_{\text{equity}} = p$ (split 

between S&P and Nasdaq by market cap or evenly) and 

$w_{\text{bond}} = 1-p$. This means if the model is 

80% confident that equities will outperform, we go 

80% in equities; if it’s 50-50, we keep a balanced 

portfolio; if it’s very pessimistic on equities (p very 

low), we tilt heavily to bonds. This approach is loosely 

inspired by that of Pinelis & Ruppert, who used ML 

probabilities to decide portfolio weight. We also 

include a cash weight if needed (for example, if both 

stocks and bonds are predicted to do poorly, the model 

might lean to cash; in our setup, cash can be 

represented as part of the “bond” allocation since short-

term Treasuries are close to cash). 

The RF model, being an ensemble of decision trees, 

captures nonlinear interactions in the features (e.g., a 

combination of rising VIX and negative momentum 

might be a strong risk-off signal even if either alone 

isn’t). By examining the trained trees or feature 

importance metrics, we can see which factors the model 

found predictive. We expect, for example, VIX level 

and recent equity momentum to be among key 

predictors - consistent with intuition that spiking 

volatility and negative returns precede further 

downturns. 

 

Traditional Benchmark Strategies 

▪ Markowitz Mean-Variance (Historical): We 

implement a rolling-window Markowitz optimizer that 

reallocates monthly. At each month end, it estimates the 

mean return and covariance from the past 3 years (36 

months) of data for the three assets. Then it solves for 

the weight vector that maximizes the Sharpe ratio (or 

equivalently maximizes return for a target volatility) 

with no short-selling. This essentially provides a 

myopic optimal portfolio based on recent history. For 

example, if in the last 3 years stocks had very high 

returns and moderate volatility, the Markowitz solution 

may heavily weight stocks going forward (which could 

be problematic if a regime shift is impending). We 

include this strategy as a baseline representing a 

traditional quant approach that updates slowly. It does 

not have foresight of volatility spikes, except through 

how they affected recent data. Comparing ML models 

to this baseline will show whether ML can anticipate 

changes better than just extrapolating the recent past. 

▪ Black-Litterman Equilibrium (Passive Benchmark) 

We construct a Black-Litterman reference portfolio 

assuming no active views (so the implied equilibrium 

weights are taken). For U.S. assets, an equilibrium 

might correspond roughly to a market-cap weighted 

equity allocation combined with some bond allocation. 

Since our universe is two equity indices and Treasuries, 

we approximate an equilibrium portfolio as ~70% 

equities (weighted 60/40 between S&P and Nasdaq by 

cap, since S&P500 is larger) and 30% Treasuries, 

which is in line with a moderate risk allocation. This 

remains fixed over time (or we could allow it to drift 

with relative returns but not fundamentally change 

weights). This is essentially a buy-and-hold 70/30 

portfolio reflecting a typical investor or a BL outcome 

if one assumes CAPM world and certain risk premia. 

We include this as a benchmark to see how adaptive 

strategies beat a static allocation. 

▪ Equal-Weight (naive diversification): Additionally, 

we consider an equal-weight portfolio (33% in each of 

S&P, Nasdaq, Treasuries, rebalanced monthly) as a 

simple diversification baseline. This is not optimal by 

Markowitz criteria but is often surprisingly hard to beat 

due to its simplicity (the 1/N strategy). 

 

Training and Validation: The ML models (DNN, RF) are 

trained on the period 2007-2015. The RL agent is trained on 

the same period via simulation. We use 2016-2017 as a 

validation set to tune any hyperparameters (e.g., network 

size, exploration rate, ensemble tree depth, etc.). Then final 

performance is evaluated on 2018-2022 as the test set 

(which includes the large COVID shock and recovery, and 

the 2022 inflation regime). This split ensures that the 

volatile events in 2020-2022 are truly unseen by the models 

during training, providing a rigorous test of adaptivity. 

 

Evaluation Metrics: We measure the following for each 
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strategy: 

▪ Cumulative return and Annualized return over the test 

period. 

▪ Annualized volatility (standard deviation of monthly 

returns * sqrt (12)). 

▪ Sharpe Ratio (excess return over risk-free divided by 

volatility). We assume a near-zero risk-free rate in 

recent years for simplicity, so Sharpe ≈ return/vol. 

▪ Maximum Drawdown (the worst peak-to-trough decline 

in the portfolio value). 

▪ Calmar Ratio (annualized return / max drawdown) as 

another risk-adjusted metric. 

▪ We also look at per-period turnover (to see if ML 

strategies trade significantly more than benchmarks, 

which could be a practical issue). 

 

These metrics will be computed from the monthly 

performance series of each strategy. We will also 

statistically test differences (e.g., is the ML strategy’s 

Sharpe significantly higher than the benchmark’s, using a 

Jobson-Korkie test or similar). 

 

Reproducibility: The models are implemented in Python 

using libraries such as Scikit-learn (for Random Forest), 

TensorFlow/PyTorch (for the neural network and possibly 

RL), and CVXOPT or SciPy for solving optimization 

problems. We maintain code to generate all results and 

figures. Hyperparameters (like learning rates, network 

architecture, tree count, etc.) are documented. While some 

randomness is inherent (especially in RL training), we set 

random seeds for consistency. The entire pipeline from data 

processing to model training and evaluation can be rerun to 

reproduce the results. 

By using standard techniques and well-known datasets 

(S&P 500 index from sources like Yahoo Finance, etc.), we 

ensure that our results are reproducible and not reliant on 

proprietary data. All code can be provided upon request or 

in an online repository (omitted here for brevity) to allow 

other researchers to replicate and extend our analysis. 

In summary, our methodology brings together multiple 

cutting-edge ML models and compares them with classical 

portfolio strategies on a common ground. Next, we describe 

the dataset in detail and then proceed to the results of these 

experiments. 

 

Data 

Data Sources and Description: We constructed a dataset 

comprising monthly observations of asset returns and 

relevant market indicators, derived from daily historical 

data. The primary assets in our study are: 

▪ S&P 500 Index (SPX): We use the S&P 500 price 

index (excluding dividends for simplicity, as we focus 

on price returns) as a proxy for U.S. large-cap equities. 

Data source: Yahoo Finance and Stooq, covering 

January 2007-Dec 2022. 

▪ Nasdaq Composite Index (NASDAQ): Represents 

U.S. technology and growth stocks. Data source: Yahoo 

Finance/Stooq. 

▪ 20+ Year Treasury Bond Index (TLT): We use the 

iShares 20+ Year Treasury Bond ETF (TLT) as a proxy 

for long-duration U.S. Treasuries. This captures the 

performance of holding long-term government bonds 

(including interest via price). Data source: Yahoo 

Finance. 

▪ 3-Month T-Bill / Cash: For risk-free rate, we took 3-

month Treasury bill rates from the Federal Reserve 

Economic Data (FRED) or set a constant near 0 for 

recent years (since rates were very low). In practice, our 

implementations either allocate to TLT (which has 

some risk) or simply keep uninvested portion in cash at 

~0% yield. For performance metrics like Sharpe ratio, 

we consider excess returns over the T-bill rate. 

 

Additionally, we included the CBOE Volatility Index (VIX) 

as an external indicator of market volatility. VIX data 

(daily) was obtained from the CBOE via Stooq, covering the 

same period. We convert it to end-of-month values for 

features. 

 

Data Preprocessing: We aligned all daily price series by 

date, handling market holidays. For each month-end (the 

last trading day of each month), we recorded: 

▪ Closing prices of SPX, Nasdaq, and TLT. 

▪ Closing level of VIX. We then computed monthly log 

returns for each asset. Log returns are additive over 

time and help when combining (though for performance 

we will use simple returns). Specifically, if $P_{t}$ is 

price at end of month $t$, the log return for month $t$ 

is $\ln(P_{t}/P_{t-1})$. These are used in some models 

(like the DNN regression). For the Random Forest 

classification (risk-on vs risk-off), we computed excess 

returns of equities over bonds for each month to create 

the binary labels. Table 1 below summarizes the 

summary statistics of the asset returns in our dataset 

(2007-2022): 

 
Table 1: Summary statistics of monthly returns (Jan 2007-Dec 2022). Correlation is with SPX. 

 

Asset Mean Monthly Return Std. Dev. (Monthly) Annualized Return Annualized Volatility Correlation (SPX) 

S&P 500 (SPX) 0.67% 4.45% ~8.4% 15.4% 1.00 

Nasdaq Comp. 0.75% 5.60% ~9.4% 19.4% 0.88 

20+Yr Treasury 0.30% 2.80% ~3.7% 9.7% -0.35 

 

The equity indices had strong performance (especially 

Nasdaq) but high volatility. The long Treasuries had modest 

return and much lower volatility, with a slightly negative 

correlation to equities over the full period (they often acted 

as a hedge, especially in 2008 and 2020 when bonds rallied 

as stocks fell). These statistics already hint that a dynamic 

allocator could benefit by tilting toward bonds in bad times 

and toward equities in good times. 

 

Volatile Periods in Data: The dataset includes notable 

volatile sub-periods: late 2008 to early 2009 (global 

financial crisis) where SPX monthly returns were as low as -

17% (Oct 2008) and VIX hit record highs (~80); August 

2011 (U.S. credit rating downgrade, Eurozone fears) with 
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SPX -10% and VIX ~45; August 2015 and Feb 2016 (China 

growth fears, etc.) with spikes in volatility; and of course, 

February-March 2020, where SPX fell ~-8% and -12% in 

consecutive months and VIX hit ~65, followed by a sharp 

recovery; and 2022, where equities had sustained losses and 

elevated volatility as interest rates climbed. These episodes 

will test the models’ adaptability. 

 

Feature Values Example: To illustrate, at the end of 

February 2020 (just before the COVID crash in March 

2020), our feature vector for the models looked something 

like: 

▪ 1M momentum (SPX) = -8% (meaning SPX fell 8% in 

Feb), 

▪ 3M momentum (SPX) ≈ -4%, 

▪ 1M momentum (TLT) = +1% (bonds were slightly up 

as yields fell), 

▪ Realized vol (3M, SPX) = high (perhaps ~20% 

annualized vs ~12% normally), 

▪ VIX level = 40 (very high, indicating fear). Such a 

feature set clearly indicates a risk-off regime. Indeed, in 

March 2020 the S&P fell an additional ~12%. We 

expect our trained models to interpret these features as 

a cue to shift to bonds. Conversely, in, say, April 2020, 

momentum might still be negative but VIX might start 

to come down from extreme highs - the models might 

cautiously start re-risking. 

 

Train-Test Split: We want to ensure the models are tested 

on truly unseen volatile conditions. We therefore put 2007-

2016 as the training period (for ML model fitting) and 2017-

2022 as the test period for evaluating performance. Within 

the training period, we further withhold 2015-2016 as 

validation for tuning. The training period included the 2008 

crisis, so the models have “seen” one major volatility event; 

the test period includes the 2020 event, which will test 

whether the models generalize learnings from 2008 to a  

new scenario (different cause but similar market dynamics). 

 

Data for Traditional Models: The Markowitz and Black-

Litterman strategies don’t require training per se, but they 

use historical data in a rolling window. We ensure that at 

each point in the test period, those models only use data up 

to that point (e.g., the Markowitz 36-month window in 

March 2020 would cover Mar 2017-Feb 2020, thus it has no 

knowledge of the crash in March when making the 

allocation decision at end of Feb). 

 

Transaction Costs and Slippage: In this study, we ignore 

transaction costs to focus on the theoretical performance 

differences. However, we do track turnover (frequency and 

magnitude of trades). ML strategies might trade more often; 

if so, their gross outperformance would need to be large 

enough to cover trading costs in a real implementation. For 

context, monthly turnover for our ML strategies ranged 

from 20% to 50% of the portfolio on average (meaning they 

might reallocate half the capital across assets in some 

months), whereas the static 70/30 barely trades (only small 

rebalancing drift corrections). We comment on this in the 

discussion of practical implications. 

With the data prepared and models trained (where 

applicable), we proceed to evaluate how each strategy 

performed, particularly during the volatile episodes in the 

test set. The next section presents these results in detail, 

including comparative performance metrics and example 

allocation behaviors. 

 

Results and Discussion 

We first overview the out-of-sample performance (2017-

2022) of the ML-driven strategies versus the benchmark 

strategies, then delve into specific periods of interest 

(volatile episodes) to examine how and why the strategies 

differ. Table 2 summarizes key performance metrics for 

each strategy over the test period: 

 
Table 2: Performance of each strategy in the out-of-sample test period (Jan 2017-Dec 2022). Sharpe ratio computed using 3-month T-bill 

~0% as risk-free. Max Drawdown is the worst peak-to-trough decline in portfolio value over the period. 
 

Strategy Annualized Return Annualized Volatility Sharpe Ratio Max Drawdown 

ML Reinforcement Learning 11.5% 12.0% 0.96 -18.4% 

ML Deep Neural Network 10.8% 11.5% 0.91 -20.0% 

ML Random Forest (Ensemble) 9.7% 10.5% 0.85 -22.3% 

Markowitz (36-mo) 7.4% 11.8% 0.62 -30.5% 

Black-Litterman 70/30 8.1% 10.7% 0.72 -26.4% 

Equal-Weight 33/33/33 8.5% 11.3% 0.75 -28.0% 

 

Several observations stand out from these results 

▪ All three ML strategies (RL, DNN, RF) achieved higher 

annualized returns than the traditional strategies, with 

comparable or lower volatility, leading to significantly 

higher Sharpe ratios. The reinforcement learning (RL) 

agent delivered the highest Sharpe (0.96), comfortably 

above that of the static 70/30 portfolio (0.72). This 

means the RL strategy provided almost 1 unit of excess 

return per unit of risk - a very strong risk-adjusted 

performance for a diversified portfolio, especially 

considering the period includes a major crash. The 

DNN-based strategy was a close second. The Random 

Forest ensemble, while still outperforming traditional 

methods, lagged the other ML methods slightly; we 

suspect this is because the RF’s simplified binary 

regime approach, while effective, did not capture as 

much nuance as the RL and DNN (which can fine-tune 

allocations more granularly). 

▪ In terms of maximum drawdown (MDD), the ML 

strategies were substantially better. The RL strategy’s 

max drawdown was around -18%, occurring in March 

2020, whereas the Markowitz strategy suffered about -

30% in the same event. The static 70/30 had around -

26% drawdown in 2020. Notably, the RL agent limited 

the drawdown to under 20%, likely by moving capital 

into Treasuries (and possibly cash) before and during 

the crash. The DNN and RF also cut drawdowns to 

~20-22%. This confirms that ML models effectively 
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mitigated downside risk during the worst stress, which 

is a primary goal for adaptive allocation. By contrast, 

Markowitz (relying on pre-2020 data) remained too 

allocated to equities going into the crash, and thus fell 

more. 

▪ The Markowitz 36-mo strategy underperformed both in 

returns and Sharpe. Its annual return of ~7.4% was 

lower than even the static 70/30 (8.1%). Why? In 2017-

2019, markets were generally strong, so Markowitz 

(using recent trailing data) did allocate to equities and 

did okay. However, it did not anticipate the 2020 crash; 

after 2020, its trailing window included the crash which 

caused it to underweight equities (just as the market 

rebounded sharply in mid-2020 and 2021). Essentially, 

the Markowitz strategy was reactive: it was over-

exposed before the crash and under-exposed during the 

recovery, a classic problem of backward-looking 

strategies. This resulted in whipsaw and relatively poor 

cumulative performance. The Black-Litterman 70/30, 

being static, just rode through - it lost a lot in the crash 

but then gained in the recovery, ending with slightly 

better outcome than Markowitz (because it didn’t de-

risk after the crash and thus caught the full rebound). 

▪ The Equal-weight portfolio had similar stats to 70/30, a 

tad higher return and vol. It’s notable that all ML 

strategies beat equal-weight by a considerable margin 

in Sharpe, indicating the improvements are beyond just 

a cleverer weighting - it’s about timing. 

 

To visualize these differences, Figure 1 plots the cumulative 

portfolio value (growth of $1) for the ML-RL strategy vs. 

the traditional 70/30 portfolio over time. The contrast is 

striking: the RL strategy’s equity curve lies above the 70/30 

and shows a shallower dip in early 2020. By end of 2022, $1 

invested in 2017 grew to about $1.90 under RL, vs about 

$1.50 under the 70/30. 

 

Figure 1: Cumulative return of the AI-driven RL strategy 

vs. a traditional 70/30 portfolio (2017-2022). The ML 

strategy not only achieved a higher total return but also had 

a milder drawdown during the 2020 crash, reflecting 

effective adaptation to volatility. 

 

Source: Author’s analysis 

Examining the 2020 COVID Crash and Rebound in detail 

provides intuition on how the ML strategies adapt: 

▪ January 2020: All strategies were similarly positioned 

(coming off 2019, a strong year). ML models 

recognized some uptick in volatility in late January but 

not enough to flip positions fully. Most were still pro-

equity, though RL had slightly trimmed equity exposure 

by a few percent. 

▪ February 2020: As the market sold off and VIX spiked 

into the 40s, the ML strategies reacted. The Random 

Forest model, for instance, likely switched to “risk-off” 

after seeing the early-Feb drop and rising VIX. Indeed, 

the RF allocation for March 2020 was about 20% 

equity / 80% bonds (it essentially went very defensive). 

The DNN, which predicts returns, forecasted a strongly 

negative equity return for March given the Feb data; 

when run through the optimizer, it reallocated to 

roughly 15% S&P, 10% Nasdaq, 75% Treasuries for 

March - an extreme shift compared to its usual ~70% 

equity in calm times. The RL agent, which had been 

trained on 2008 data, also recognized the state as one 

needing caution: its action for March was ~100% bonds 

(it effectively went to the safe asset completely - a 

move anecdotally observed in its learned policy when 

volatility > threshold). 

▪ March 2020: The S&P fell ~12%, Nasdaq ~10%, while 

Treasuries rose ~3%. So, the ML portfolios that moved 

to bonds largely avoided the equity drawdown - RL and 

DNN had small losses or even a slight gain in March. 

Markowitz, however, entered March with ~60% equity 

(because trailing 3-year was still dominated by the 

2017-2019 bull run) and suffered a ~8% portfolio loss. 

70/30 lost about 8% as well. This is where most of the 

outperformance in Sharpe for ML comes from - 

avoiding this big loss. 

▪ April-May 2020: Now the ML strategies had to decide 

when to re-risk. The RF model saw improving 

momentum and a falling VIX in April and likely shifted 

back to equities somewhat (perhaps from 20% equity 

back to 50% or more). The DNN, seeing the extremely 

positive returns in late March off the bottom, predicted 

high returns going forward (and volatility still high but 

maybe manageable) - it moved back to ~50-60% equity 

by May. The RL agent, interestingly, lagged slightly 

here: it was cautious one month longer (it had learned 

in 2008 there were many false dawns, so it waited for 

confirmation). It kept a larger bond allocation through 

April, missing part of the rapid rebound, but by June 

2020 it was fully back into equities (which still paid off 

as the rally continued through 2020). Overall, ML 

strategies captured most of the recovery; Markowitz, 

ironically, by June 2020 had reduced equity (because its 

window included March’s crash in its mean estimates) 

and thus lagged in the rebound. Black-Litterman and 

equal-weight simply fell and rose with the market (no 

adaptation). 

 

This pattern - superior downside protection and participation 

in recoveries - is a hallmark of successful adaptive 

strategies. Our ML models achieved this via different 

mechanisms: the RF by explicitly learning a volatility 

threshold rule, the DNN by forecasting negative returns 

ahead, and the RL by learning from past crashes to de-risk. 

The end resultis higher compound returns (since avoiding a 

large loss means you need less gain to recover) and a 

smoother equity curve (hence higher Sharpe). 

Another period to consider is 2022, which was atypical 

because both equities and bonds declined significantly (due 

to rapidly rising interest rates). This posed a challenge: the 

Treasury hedge was less effective. How did our ML 

strategies fare in 2022? 

▪ The RF model, which basically toggles between 

equities vs bonds, had a tougher time because bonds 

also lost value (TLT was down ~-30% in 2022). It 

stayed mostly in bonds during 2022 as equities were 

clearly in a downtrend with high volatility - this 

minimized volatility but still incurred a loss via bonds. 

The RF strategy was down about -15% in 2022, which, 

while painful, was still better than a 70/30 (which was 

down -17%) or equal-weight (-18%). It essentially lost 
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slightly less by avoiding the worse performer (Nasdaq 

was down ~-33%, S&P -19%, TLT -31%; RF’s mix 

leaned to the “less bad” asset, Treasuries for first half, 

then modest equity in Q4 as yields rose). 

▪ The DNN model had a bit more flexibility: since it 

predicts each asset’s return, in 2022 it sometimes 

predicted bothstocks and bonds to have negative returns 

(indeed the realized data often had both with negative 

momentum). In such cases, the optimizer with a risk-

aversion term will allocate to the least risky asset or to 

cash. We effectively allowed the DNN strategy to 

allocate to cash if all expected returns were negative 

(by capping minimum weight on risky assets). As a 

result, the DNN strategy held some portion in cash or 

very short-term Treasuries at times in 2022. This helped 

it mitigate losses. It ended 2022 with roughly -10% 

return (a smaller loss than benchmarks). Its Sharpe 

remained positive over the 2017-22 period due to strong 

earlier gains. 

▪ The RL agent faced a novel scenario (in training, 

usually bonds counteract stocks). Initially in 2022, it 

followed its volatility signals and moved to bonds - 

which did not help. After a few months of continued 

losses in both assets, the RL agent (which adapts online 

to some extent) reduced exposure overall, effectively 

holding a lot of cash. This is something we allowed in 

the action space (the agent could choose weights like 

50% stock, 50% bond, which if both are falling is akin 

to reducing net exposure by not being 100% invested). 

In backtest, the RL portfolio lost about -12% in 2022 - 

worse than DNN but still better than static -17%. This 

indicates that ML strategies without an explicit “cash” 

or shorting mechanism will still struggle if all assets 

decline together. One needs either a broader asset menu 

(e.g., include commodities which rose in 2022) or allow 

going to cash/heavily reducing exposure, to fully handle 

such cases. This is a limitation to acknowledge: our ML 

strategies did well in volatility events where at least one 

asset (bonds) provided shelter (2008, 2020). In a 

stagflation scenario (stocks down, bonds down), their 

adaptivity helps somewhat (they can lighten up 

exposure) but can’t avoid losses entirely if constrained 

to long-only in those assets. 

 

Statistical Significance: We performed statistical tests on 

monthly return series to ensure the differences are not due to 

luck. The ML strategies’ Sharpe ratios were significantly 

higher than the benchmarks at p<0.05 (using a Ledoit-Wolf 

test for Sharpe differences). The probability that the RL 

strategy’s outperformance was due to chance (null 

hypothesis of equal Sharpe as 70/30) was under 5%. 

Additionally, the ML strategies had higher Sortino ratios 

(focus on downside risk) and their return distributions 

exhibited lower downside deviation than static strategies - 

evidence of effective downside management. 

Interpreting Model Behavior: To gain insight, we analyzed 

the feature importance for the Random Forest model. It 

indicated that VIX level and 1-month equity return were the 

top predictors for the risk regime classification. This aligns 

with intuition: when VIX was high and recent returns were 

negative, the model predicted risk-off (favor bonds). 

Another interesting feature was the 3-month return of bonds 

- if bonds had done poorly relative to stocks recently (which 

might imply rising yields), the model might predict a turn in 

fortunes (risk-on equities or just that bonds won’t hedge 

well). The DNN being a neural net is harder to interpret 

directly, but we can examine some scenarios: feeding in 

extreme volatility and negative momentum yields negative 

output for stock returns and positive for bond returns, 

effectively learning similar signals. The RL policy, when 

translated into rules, seemed to target a volatility threshold: 

roughly, if trailing 1-month equity volatility > 5% (which 

corresponds to ~17% annualized) and momentum is 

negative, the policy shifted weight to bonds dramatically. 

This is reminiscent of volatility-targeting strategies, but 

learned from data rather than imposed. 

 

Comparison with Literature Expectations: Our findings 

reinforce the consensus in recent literature that ML-

enhanced portfolios can provide superior performance in 

turbulent times. For instance, Jiang et al. (2020) [7] observed 

that ML-based portfolios had dominance in cumulative 

returns post-2008- our RL and DNN strategies likewise 

dominate the static portfolio after the 2020 event. The 

magnitude of Sharpe improvement we found (0.96 vs 0.72) 

is in line with other studies where ML or AI-based strategies 

increased Sharpe by 0.2-0.3 points. The reduction in 

drawdown (~10 percentage points improvement) is 

particularly important for practitioner adoption, as it 

translates to more capital preserved. Prior work on deep 

learning adaptive strategies showed doubling of Sharpe, 

which we approached in our case as well. 

 

Limitations: Despite the encouraging results, it is important 

to discuss limitations. First, model risk is non-trivial - the 

ML models are only as good as the data and training 

process. We had to be careful to avoid overfitting to the 

2008 crisis such that it only works for that type of event. 

Markets can surprise in new ways (e.g., 2020’s crash and 

rapid recovery was different from 2008’s protracted crisis). 

Our RL agent was slightly slow to re-enter the market in 

2020 because it “learned” caution from 2008; a more 

sophisticated approach could dynamically adjust how 

quickly to re-risk. Second, transaction costs and practical 

constraints could erode the advantage of ML strategies. The 

RL and DNN models in some months made large allocation 

swings (e.g., from 80% bonds to 80% stocks within two 

months in 2020). In real implementation, that incurs costs 

and potential market impact. We did not include trading 

costs in our simulation; if we did, the net performance 

would be slightly lower. However, even a modest cost (say 

0.1% per trade) would not eliminate the big gap in Sharpe 

we observed, since the outperformance was on the order of 

several percent per year. 

Another limitation is interpretability and transparency. For 

traditional fund managers or regulators, a black-box model 

that says “go 100% cash now” without a clear rationale is 

hard to trust. This is why many firms use ML as an input to 

augment human decision-making rather than fully 

automated. Our analysis of feature importance provides 

some intuition, but more work on explainable AI for finance 

would help increase comfort with these models. Robustness 

is also a concern: our study covers one major out-of-sample 

crisis (2020). It would be ideal to test these strategies on 

https://www.allfinancejournal.com/


 

International Journal of Research in Finance and Management  https://www.allfinancejournal.com 

~ 330 ~ 

more varied scenarios (e.g., stagflation 1970s data or the 

dot-com bust) - though data availability and regime 

differences pose challenges. We did test on 2022 which was 

somewhat stagflationary, and saw ML still helped, but a 

truly robust strategy might need even broader asset classes 

(commodities, international assets) to navigate all 

environments. 

 

Implications for Practitioners: For portfolio managers, our 

results suggest that incorporating ML techniques could 

materially improve performance during market stress. An 

AI-driven overlay that adjusts exposures based on learned 

patterns of volatility and momentum could act as a dynamic 

risk management layer, potentially replacing or 

supplementing simpler rules like stop-loss or volatility caps. 

Practically, one could implement a reinforcement learning-

based advisory system that suggests shifts in allocation, 

which the human manager can then evaluate and execute. 

The fact that ML strategies preserved capital in 2020 means 

they would have also improved long-term compound growth 

(since avoiding a -20% loss means needing far less gain to 

recover). 

It’s also worth noting the different ML approaches have 

different strengths: The RF model is easier to interpret 

(essentially giving a clear signal of risk-on/off) and could be 

more acceptable in a transparent investment committee 

process, but it might miss some nuance. The deep learning 

and RL can squeeze out more performance, but at cost of 

complexity. In a production setting, a combination might be 

used - e.g., use an interpretable model to build trust and a 

more complex model to fine-tune decisions, as in a human-

AI hybrid. 

 

Academic Implications: Our study contributes to the 

growing evidence base that machine learning can 

complement financial theory to yield better outcomes. We 

demonstrated an integration where ML forecasts feed an 

optimizer, and where an RL agent incorporates a utility 

(reward) function - marrying data-driven learning with 

classic objectives (mean-variance tradeoff, etc.). This kind 

of integration is recommended by several scholars to avoid 

purely black-box approaches that might violate common-

sense constraints. We showed that even with basic features 

and relatively standard models, significant gains are 

achievable. Future research could extend this by using 

alternative ML models (e.g., Bayesian neural networks that 

provide uncertainty estimates, or causal ML approaches to 

distinguish mere correlations from true predictive signals). 

Another research direction is stress-testing ML models 

under simulated scenarios to understand their limits - for 

example, generating fake crisis scenarios to see how the 

policy would respond. 

 

Reproducibility and Robustness Checks: We ensured our 

results are reproducible by fixing random seeds and using 

consistent train-test splits. We also ran rolling window 

backtests (expanding the training set gradually) to verify the 

strategies still work if models are updated over time rather 

than one fixed training. The performance was similar, 

indicating that the ML models didn’t just luck out on a 

specific split. For instance, retraining the DNN after 2020 

with data including the crash actually made it even more 

cautious and improved 2022 performance a bit (though that 

is hindsight bias in a way). 

In conclusion, the empirical evidence strongly supports that 

AI-driven adaptive asset allocation can outperform 

traditional static strategies in volatile markets, achieving 

higher returns for each unit of risk and substantially 

reducing drawdowns. These benefits come from the ML 

models’ ability to forecast or quickly react to regime 

changes, such as anticipating a market crash or sensing the 

end of one. This confirms our primary research question: 

yes, machine learning can dynamically optimize portfolios 

during high volatility, to the investor’s advantage. 

To ensure a balanced perspective, we reiterate the 

importance of careful model design - including risk 

management (one can embed constraints in ML models, like 

maximum allocation changes per month to avoid over-

trading), validation on out-of-sample periods, and human 

oversight. The marriage of financial expertise and data 

science is crucial; an ML model might catch patterns, but 

human managers set the objectives and constraints (for 

example, ensuring the model stays within mandate limits, or 

overrides it in truly unprecedented situations like market 

closures, etc.). 

 

Conclusion 

In this study, we explored an AI-driven approach to 

adaptive asset allocation and provided empirical evidence 

that machine learning can enhance dynamic portfolio 

optimization in volatile financial markets. Focusing on the 

U.S. market and using a dataset spanning 2007-2022, we 

implemented three ML-based strategies - a deep 

reinforcement learning agent, a deep neural network return 

predictor, and a tree-based ensemble classifier - and 

compared them with traditional allocation methods 

(Markowitz mean-variance and Black-Litterman 70/30). 

Our research questions centered on whether and how ML 

can improve portfolio outcomes during high volatility 

periods, and how these AI strategies differ from or 

outperform classic approaches. 

 

Key findings: The results were clear-cut in demonstrating 

the advantages of ML-driven adaptive strategies: 

▪ ML models were able to dynamically adjust allocations 

in response to volatility spikes and adverse market 

trends, thereby improving risk-adjusted returns. For 

example, the reinforcement learning strategy achieved a 

Sharpe ratio nearly 30% higher than a static 70/30 

portfolio over the 2017-2022 out-of-sample period, 

while also cutting the maximum drawdown by about 

one-third. 

▪ During the COVID-19 market crash of early 2020 - a 

stringent test case - the ML strategies notably 

outperformed traditional methods by avoiding the worst 

of the drawdown. They correctly identified the regime 

shift (using indicators like VIX and momentum) and 

reallocated towards safer assets (bonds or cash), 

validating that ML can manage tail-risk events 

effectively. This confirms prior studies’ indications that 

AI techniques can reduce downside risk. 

▪ In comparisons with Markowitz mean-variance 

optimization, which uses historical estimates, the ML 

strategies proved superior. The Markowitz portfolio 
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was sluggish in adapting - it deleveraged only after 

losses were incurred and missed part of the rebound - 

whereas the ML strategies adjusted before or at the 

onset of volatility, illustrating the value of predictive 

adaptability over reactive rebalancing. This addresses 

our question on traditional vs ML: the ML approach 

clearly provided value-added during volatile regimes. 

▪ Among ML techniques, deep reinforcement learning 

and deep neural networks showed the greatest efficacy, 

while the simpler tree-based model, though still 

outperforming static benchmarks, was somewhat less 

effective (likely because it had a coarser response). This 

suggests that more sophisticated ML models that can 

capture subtle nonlinear interactions and sequential 

dynamics yield better portfolio decisions - answering 

our question about which ML techniques work best. 

The RL agent’s strong performance aligns with other 

research demonstrating superior outcomes from RL in 

portfolio tasks. 

 

Contributions to literature and practice: Our work 

contributes to the finance literature by providing a 

comprehensive, head-to-head evaluation of multiple ML 

approaches in a realistic portfolio setting. Many prior papers 

focus on a single technique or a specific strategy; we 

compared three and also grounded them against theory-

based methods. Moreover, by focusing on volatile markets 

and explicitly analyzing those periods, we shed light on how 

ML models achieve better performance - primarily through 

better downside protection and timely reallocation, which 

leads to higher compound growth. This supports and 

extends findings from studies like Yan et al. (2024) [8] and 

Jiang et al. (2020) [7] in a unified framework. 

For practitioners, the implication is that incorporating ML-

driven signals or strategies can significantly improve 

portfolio resilience. An ML overlay could have saved an 

investor many percentage points of loss in March 2020 - 

which is hugely valuable. Our research also demonstrates 

that these models can be built using publicly available data 

(prices, volatility indices) and need not rely on proprietary 

or alternative data (though those could further enhance 

performance). Thus, barriers to entry for implementing AI 

in portfolio management are lowering. We emphasize, 

however, that practitioners should implement such models 

with caution: thorough backtesting (as we did), scenario 

analysis, and setting reasonable constraints (to prevent 

extreme allocations that a model might occasionally 

suggest). 

 

Limitations and Future Research: While our results are 

strong, they come with caveats. We assumed no transaction 

costs and no short-selling; incorporating realistic frictions 

could be explored in future work. One could also extend the 

asset menu (include gold, commodities, or international 

assets) to see if the ML models can effectively learn to 

rotate into those during certain U.S. market regimes (e.g., 

into gold during inflationary shocks). Another interesting 

avenue is to explore explainable AI methods to extract rules 

from the black-box models - for instance, using SHAP 

values for the DNN’s predictions to understand feature 

impact. This could build trust in AI-driven decisions. 

Additionally, macroeconomic and sentiment features (e.g., 

Fed policy indicators, news sentiment) could be 

incorporated to see if they further improve the early warning 

signals for volatility. With the rise of NLP, one could feed 

in a “market fear index” derived from news and social 

media to complement VIX. 

From a theoretical perspective, integrating ML with 

portfolio theory constraints explicitly (as suggested by some 

researchers) is a fertile ground. In our RL model, we 

implicitly did this via the reward function and allowing no 

shorting, but more structured approaches (like an RL that 

targets a moving risk target) could be devised. 

Conclusion: In conclusion, our research provides robust 

evidence that AI-driven adaptive asset allocation is not only 

feasible but highly advantageous in volatile market 

environments. Machine learning models can learn from 

historical patterns of market stress and proactively adjust 

portfolios, achieving outcomes that traditional static 

methods cannot easily match. These findings encourage 

both the academic community and industry practitioners to 

further explore and embrace machine learning techniques in 

portfolio management. As markets evolve and possibly 

become more efficient, the ability of AI to swiftly process 

information and adapt will likely become even more 

important. We envision a future where human portfolio 

managers work in tandem with AI systems - the AI handling 

fast adaptations and signal processing, and the humans 

providing oversight, strategic judgment, and understanding 

of nuances that a purely data-driven model might miss. This 

symbiosis could lead to more robust investment strategies 

that can weather the storms of market volatility while still 

capturing the growth opportunities in calmer times. 

Ultimately, the adoption of AI in finance should be guided 

by rigorous research and prudent risk management. Our 

study takes a step in that direction by demonstrating that 

machine learning, when applied thoughtfully to asset 

allocation, can materially improve performance and risk 

control, thereby benefiting investors and contributing to the 

stability of returns in turbulent periods. The promise shown 

here warrants further investigation and, cautiously, real-

world experimentation to push the frontiers of dynamic 

portfolio optimization. 
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