

International Journal of Research in Finance and Management

P-ISSN: 2617-5754 E-ISSN: 2617-5762 Impact Factor (RJIF): 5.32 IJRFM 2025; 8(2): 806-812 www.allfinancejournal.com

Received: 10-10-2025 Accepted: 13-11-2025

Smitha S

Assistant Professor, Regional College of Management, Bengaluru, Karnataka, India

Uma Maheswari K

Professor, Regional College of Management, Bengaluru, Karnataka, India

Artificial intelligence and the future of workforce development: Advancing skills for the digital era

Smitha S and Uma Maheswari K

DOI: https://www.doi.org/10.33545/26175754.2025.v8.i2i.612

Abstract

This study looks at how artificial intelligence (AI) is transforming the workforce by fostering innovation across the industry and improving skill sets and efficiency. The workforce is greatly impacted by AI since it streamlines repetitive tasks enables personalized learning and improves decision-making. Through the use of technologies like robotics machine learning and natural language processing artificial intelligence (AI) relieves workers of monotonous tasks. They can focus on more worthwhile strategic and creative work as a result. The study highlights several significant aspects of AI's role in workforce development including reskilling and upskilling where AI promotes lifelong learning and helps workers adapt to the ever-changing demands of their jobs. It also emphasizes how AI tools can be used to improve workflows and enable people to accomplish more with less effort. AIpowered personalized learning experiences make it possible to develop specialized learning resources that close knowledge gaps and offer tailored learning paths. Even though AI may automate certain jobs it also creates new jobs and transforms existing ones in fields like data science machine learning engineering and AI ethics. AI also improves decision-making by giving employees data-driven insights that enable them to make creative well-informed decisions. The purpose of the paper is to present a thorough analysis of AI applications in diverse organizations and evaluate how it will influence the workforce of the future.

Keyword: Decision-Making, machine learning, workforce, job creation, innovation.

Introduction

AI-driven workforce transformation models are reshaping workforce planning and development amid rapid automation and digitalization. They enable data-driven decisions in hiring, training, and talent development, ensuring employees remain future-ready (A. AIYahmadi.et.al). For SMEs, especially, adopting reskilling and upskilling initiatives strengthens agility and competitiveness in an evolving digital landscape (C.G. Accamma.et.al) and Continuous learning fosters adaptability and resilience, key to thriving in uncertain environments by (M. Dutta and S. Chatterjee). Hence, integrating future-focused education and training is critical for employability in the Fourth Industrial Revolution by A. N. Lee and Y. Nie

Furthermore, preparing the workforce for the future requires not only technical skills but also the ability to anticipate societal and technological shifts. The use of data analytics supports HR professionals in forecasting workforce needs and making strategic talent decisions [S. S. Mantha]. Collaboration between organizations and educational institutions is vital for developing a digitally skilled workforce—particularly for SMEs, such as those in Malaysia, striving to adapt to technological transformation [M. V. Singh and G. Chauhan].

The pandemic highlighted the importance of flexible work strategies and continuous learning to manage disruptions effectively [A. Beer.et.al]. Similarly, in the UAE, investments in upskilling and AI integration are crucial to developing a workforce ready for emerging technologies and the challenges of the digital economy [D. S. Calonge. et.al].

Review of Literature

AI technologies such as chatbots, predictive analytics, and fraud detection have improved customer relationship management by enhancing security, personalization, and efficiency (Uma Maheswari K, 2024) [19]. These innovations boost productivity and decision-making

Correspondence Author: Smitha S

Assistant Professor, Regional College of Management, Bengaluru, Karnataka, India while increasing the demand for new skills across industries. As technology evolves, organizations must focus on reskilling employees to manage AI systems and remain competitive in the digital economy (Uma Maheswari, K. et.al).

Artificial Intelligence (AI) is transforming human resource management by automating routine tasks, improving decision-making, and enhancing employee experiences. Viewed through the lens of transhumanism, AI serves to augment human productivity and potential. (C.G. Accamma, S. Asha, A. Venkateshwara, and K. Maney, 2025) [10] It enables data-driven recruitment. onboarding. performance monitoring, promoting continuous improvement and personalization. However, its adoption also raises ethical challenges related to fairness. transparency, and data privacy, highlighting the need for a balanced, human-centred approach.

Artificial intelligence (AI) enhances online consumer satisfaction by enabling real-time interactions, personalized experiences, and predictive analytics. As AI technology continues to evolve, its influence on e-commerce will expand, leading to more efficient, seamless, and customer centric shopping experiences (Uma Maheswari K, 2025) [20]

Objectives

To assess how AI can increase productivity by reskilling and upskilling workers enabling personalized learning changing job roles and promoting better decision-making.

Research Design

This study combines qualitative and quantitative methodologies in a mixed-methods research design to provide a comprehensive analysis of AIs role in workforce transformation. A thorough literature review looks at earlier research on how AI is affecting workforce dynamics such as skill adaptation and job restructuring as part of the qualitative component. In the quantitative component information is collected from companies that have successfully implemented AI-driven workforce interventions. The primary goal of the research is to assess how much AI can increase productivity by reskilling and upskilling workers enabling personalized learning changing job roles and promoting better decision-making. The study does this by assessing workforce development tools related to artificial intelligence (AI) such as natural language processing (NLP) machine learning (ML) and robotic process automation (RPA). Through industry standards performance metrics and employee feedback surveys the impact of these technologies is examined. The study further categorizes organizations into three groups for comparison purposes: low moderate and high AI adoption.

Data Collection

To ensure a thorough analysis of the workforce transformation driven by AI data was gathered from a variety of sources. A total of fifty industry reports were reviewed offering insights into how AI trends are influencing employment. 100 peer-reviewed studies from academic journals provided a scholarly viewpoint on how AI will affect employment markets. Furthermore, 30 business case studies were examined to comprehend the adoption of AI and its effects on businesses. 500 survey

responses reflecting opinions about AI in work roles were gathered to assess employee sentiment. Finally, the dataset as a whole was enhanced by qualitative insights obtained from expert interviews with fifty HR and AI professionals. Tables of this study shows the secondary data collection samples and sources from industry reports published by McKinsey & Company, World Economic Forum (WEF), PwC, Deloitte Insights, IBM Global AI Index, and Accenture Research. Additional information was obtained from academic databases such as Scopus, IEEE Xplore, Elsevier (ScienceDirect), SpringerLink, and Google Scholar to review relevant scholarly articles and empirical studies. Furthermore, company white papers and reports from leading technology organizations—Microsoft, Google, Amazon Web Services (AWS), Tata Consultancy Services (TCS), and Infosys Knowledge Institute—were analysed to understand corporate perspectives on AI-driven workforce transformation.

Table 1: Data Collection

Source	Type of Data Collected	Number of Samples
Industry Reports AI-driven workforce transformation trends		50 reports
Academic Journals	Peer-reviewed studies on AI's impact on employment	100 articles
Corporate Case Studies	AI adoption and outcomes in enterprises	30 case studies
Employee Surveys	Perception of AI in job roles	500 responses
Expert Interviews	Insights from HR and AI professionals	50 interviews

• AI Applications in Workforce Development

Personalized learning job transformation productivity enhancement upskilling and reskilling and decision-making improvements are the five main categories into which AI applications in workforce development fall. Together these areas show how AI is influencing contemporary workplaces.

Upskilling and Reskilling

AI-powered adaptive learning platforms and skill development models play a vital role in employee reskilling and upskilling. By using neural network-based recommendation algorithms, these systems personalize training based on individual skill gaps and learning preferences.

• Productivity Enhancement

AI-driven automation technologies are revolutionizing workplace productivity by streamlining workflows, minimizing errors, and reducing manual labour. Robotic Process Automation (RPA) automates repetitive tasks, while predictive analytics and intelligent workflow systems enhance operational decision-making. By this way AI-based collaboration tools, booting the productivity.

• Personalized Learning

AI enables personalized learning by adapting content to individual behaviour, preferences, and performance. This study examines machine learning models that use intelligent assessment and adaptive content generation to create customized training paths.

• Job Transformation

AI integration has led to changes in workplace roles with some tasks being automated improved or redesigned. This study quantifies the evolution of job roles by tracking trends in task redistribution in human-AI collaboration and the rates of new job creation. AI-driven job displacement and emerging opportunities in AI-driven industries are analyzed to assess workforce adaptability.

• Decision-Making Enhancement

Big data analytics machine learning models and optimization algorithms are used by AI-powered decision-support systems and AI-based predictive modelling to enhance managerial decision-making. Prediction confidence intervals decision-support performance metrics and ground truth comparisons are used to evaluate the precision and effectiveness of AI-driven decisions.

• Data Analysis Techniques

AI-powered analytics platforms and statistical tools were used to analyze the gathered data. Python-based

machine learning models and SPSS were used to process quantitative data to find trends and connections in AI-driven workforce development. In order to evaluate the perceived impact of AI sentiment analysis was done on employee survey responses using NLP models.

• Evaluation Metrics

To gauge AIs efficacy in workforce transformation the study uses several key performance indicators (KPIs). These include job retention productivity gain percentages completion rates of AI-assisted learning and increases in decision-making accuracy.

To effectively compare outcomes organizations were divided into three categories based on their levels of AI adoption: low moderate and high.

Results and Discussion

AI Adoption Levels and Workforce Impact

The data in Table 2 reveals how different AI adoption levels influenced several workforce metrics.

Table 2: AI Adoption Levels and Workforce Impact

AI Adoption Level	Productivity Gain (%)	Learning Completion Rate (%)	Job Transformation Rate (%)	Decision-Making Accuracy (%)	Employee Satisfaction Score (1-10)
Low	5.2	35.8	10.4	56.1	5.2
Moderate	12.6	58.4	22.7	71.3	6.8
High	25.3	82.1	39.5	89.4	8.3

Source: World Economic Forum (2023) - Future of Jobs Report; PwC (2022) - AI and Productivity Study; McKinsey & Company (2023) - The State of AI in 2023; Deloitte Insights (2022) - AI Adoption in the Enterprise; IBM Global AI Adoption Index (2023)

From the table 2; at the low AI adoption level, productivity gains were minimal at 5.2%, while learning completion rates and job transformation rates were significantly lower, at 35.8% and 10.4%, respectively. Decision-making accuracy was also limited, reaching only 56.1%, and employee satisfaction remained at a low score of 5.2 out of 10. As AI adoption moved to a moderate level, there was a noticeable improvement across all metrics. Productivity gains rose to 12.6%, the learning completion rate increased to 58.4%, and job transformation rate jumped to 22.7%. Furthermore, decision-making accuracy climbed to 71.3%,

and employee satisfaction also increased to 6.8 out of 10. At high AI adoption, the workforce experienced the most substantial benefits, with productivity gains of 25.3%, a learning completion rate of 82.1%, and a job transformation rate of 39.5%. Decision-making accuracy was notably high at 89.4%, and employee satisfaction reached 8.3, reflecting the optimal conditions created by extensive AI integration.

AI Application Domains and Effectiveness Metrics

Table 3 outlines the effectiveness of AI in different application domains.

 Table 3: AI Application Domains and Effectiveness Metrics

AI Application Domain	NLP Effectiveness (%)	ML Effectiveness (%)	RPA Effectiveness (%)	Overall Impact (%)
Upskilling & Reskilling	71.2	78.4	62.3	70.6
Productivity Improvement	68.9	82.1	74.5	75.2
Personalized Learning	79.3	85.7	67.2	77.4
Job Transformation	64.5	80.2	71.8	72.2
Decision-Making	83.1	89.5	69.4	80.7

Source: World Economic Forum (2023) - Future of Jobs Report; PwC (2022) - AI and Productivity Study; McKinsey & Company (2023) - The State of AI in 2023; Deloitte Insights (2022) - AI Adoption in the Enterprise; IBM Global AI Adoption Index (2023)

From the above table 3; In the upskilling and reskilling domain, machine learning (ML) was the most effective (78.4%), followed by natural language processing (NLP) at 71.2%, with robotic process automation (RPA) trailing at 62.3%. The overall impact in this domain was 70.6%, indicating that AI played a significant role in enhancing workforce capabilities. Productivity improvement saw a higher level of ML effectiveness (82.1%), while NLP and RPA effectiveness were 68.9% and 74.5%, respectively. The overall impact in productivity was 75.2%,

demonstrating AI's positive influence on improving operational efficiencies. In personalized learning, both NLP (79.3%) and ML (85.7%) were highly effective, contributing to an overall impact of 77.4%. For job transformation, NLP effectiveness was 64.5%, ML was 80.2%, and RPA showed 71.8% effectiveness, leading to an overall impact of 72.2%. Decision-making exhibited the highest effectiveness across all domains, with NLP and ML contributing 83.1% and 89.5%, respectively, and an overall impact of 80.7%.

Industry-Wise AI Adoption and Workforce Impact

Industry-specific AI adoption and its workforce impact are presented in Table 4.

Table 4: Industry-Wise AI Adoption and Workforce Impact

Industry	AI Adoption Rate (%)	Productivity Gain (%)	Job Retention Rate (%)	AI-Driven Learning Engagement (%)
IT & Software	85.2	28.7	78.4	92.1
Manufacturing	67.3	21.5	65.3	73.5
Healthcare	78.9	24.2	72.6	85.4
Banking	81.4	26.3	74.9	88.2
Retail	59.7	15.8	60.1	69.3

Source: World Economic Forum (2023) - Future of Jobs Report; PwC (2022) - AI and Productivity Study; McKinsey & Company (2023) - The State of AI in 2023; Deloitte Insights (2022) - AI Adoption in the Enterprise; IBM Global AI Adoption Index (2023).

The IT and software industry had the highest AI adoption rate at 85.2%, leading to a productivity gain of 28.7% and a job retention rate of 78.4%. AI-driven learning engagement in this sector was notably high at 92.1%, reflecting the strong integration of AI in training and development programs. In manufacturing, AI adoption was lower at 67.3%, resulting in a productivity gain of 21.5% and a job retention rate of 65.3%. The AI-driven learning engagement in this sector was also moderate at 73.5%.

Healthcare and banking exhibited similar adoption rates (78.9% and 81.4%, respectively), with healthcare seeing a

24.2% productivity gain and job retention rate of 72.6%, while banking had slightly higher productivity and retention (26.3% and 74.9%). Retail had the lowest AI adoption rate (59.7%), leading to the lowest productivity gain (15.8%) and job retention rate (60.1%), with AI-driven learning engagement at 69.3%.

Employee Perception of AI in Job Roles

Table 5 shows employee sentiment towards AI adoption in different job roles.

Table 5: Employee Perception of AI in Job Roles (in %)

Job Role Category	Positive Sentiment	Negative Sentiment	Neutral Sentiment	AI Adoption Level
IT Professionals	82.4	9.5	8.1	89.2
HR & Recruitment	74.6	12.8	12.6	77.3
Manufacturing Workers	58.9	25.4	15.7	65.7
Healthcare Staff	71.3	14.9	13.8	79.8
Retail Employees	53.7	31.2	15.1	60.4

Sources: IBM Global AI Adoption Index, Future of Jobs report 2023, Deloitte insights 2023, AI and the workforce-Global Survey

From the above table 5, IT professionals displayed a strong positive sentiment (82.4%) toward AI, with a high AI adoption level of 89.2%. HR and recruitment professionals followed with 74.6% positive sentiment and 77.3% AI adoption. Manufacturing workers were less favourable, with only 58.9% positive sentiment and 65.7% adoption, indicating concerns about job displacement or transformation. Healthcare staff had a positive sentiment of 71.3%, with a relatively high AI adoption rate of 79.8%.

Retail employees had the lowest positive sentiment (53.7%) and AI adoption rate (60.4%), reflecting resistance or hesitation about AI's impact on their roles.

Correlation Analysis Between AI Implementation and Workforce Productivity

Table 6 presents the correlation factors between AI implementation and various workforce metrics.

Table 6: Correlation Analysis Between AI Implementation and Workforce Productivity

Correlation Factor	AI Adoption Rate	Productivity Gain	Learning Completion Rate	Job Transformation Rate	Decision-Making Accuracy
AI Adoption Rate	1.00	0.84	0.79	0.72	0.91
Productivity Gain	0.84	1.00	0.68	0.66	0.83
Learning Completion Rate	0.79	0.68	1.00	0.58	0.76
Job Transformation Rate	0.72	0.66	0.58	1.00	0.70
Decision-Making Accuracy	0.91	0.83	0.76	0.70	1.00

Table 6, shows that there is a strong positive correlation was found between AI adoption rate and productivity gain (0.84), decision-making accuracy (0.91), and learning completion rate (0.79), indicating that higher AI adoption generally improved these factors. A slightly weaker correlation was observed between job transformation rate and AI adoption (0.72), suggesting that while AI adoption had a positive effect on job roles, the transformation was less pronounced than other factors.

Similarly, productivity gain showed a moderately strong correlation with decision-making accuracy (0.83) and learning completion rate (0.68), highlighting that as productivity increased, so did accuracy in decision-making and learning outcomes.

AI Model Performance for Workforce Transformation

Table 7 details the performance of different AI models for workforce transformation.

Table 7: AI Model Performance for Workforce Transformation

AI Model Used	Accuracy (%)	Precision (%)	Recall (%)	F1 Score (%)	Processing Time (ms)
Decision Trees	79.5	76.3	74.2	75.2	120
Random Forest	85.7	82.9	80.4	81.6	95
Neural Networks	91.3	89.5	86.8	88.1	210
BERT (NLP)	88.4	86.7	83.9	85.2	180
XGBoost	87.9	85.1	82.7	83.9	150

Table 7, shows the Neural networks demonstrated the highest accuracy (91.3%) and F1 score (88.1%), though with a relatively high processing time of 210 ms. Random

Forest, with an accuracy of 85.7% and an F1 score of 81.6%, was faster, processing in 95 ms. XGBoost and BERT (NLP) performed similarly with slightly lower accuracy and F1 scores, but were also faster than neural networks (150 ms for XGBoost and 180 ms for BERT). Decision Trees showed the lowest performance in terms of precision, recall, and F1 score but had a moderate processing time of 120 ms.

Workforce Readiness for AI Implementation by Organization Size

The below table 8 Shows the workforce readiness for AI Implementation by Organisation Size

Table 8: Workforce Readiness for AI Implementation by Organisation Size

Organization Size	AI Adoption Rate (%)	Workforce AI Readiness (%)	Learning Completion (%)	AI-Driven Decision Accuracy (%)
Small (<500 Employees)	42.6	55.8	49.2	61.3
Medium (500-5000 Employees)	68.4	72.9	64.8	75.7
Large (>5000 Employees)	85.2	89.6	81.3	91.4

From table 8, organizations of different sizes exhibited varying levels of AI adoption and workforce readiness. Small organizations (<500 employees) had the lowest AI adoption rate (42.6%) and workforce readiness (55.8%), with learning completion rates and decision accuracy at 49.2% and 61.3%, respectively. Medium-sized organizations (500-5000 employees) showed higher adoption (68.4%) and readiness (72.9%), with better outcomes in learning completion (64.8%) and decision

accuracy (75.7%). Large organizations (>5000 employees) had the highest AI adoption rate (85.2%) and workforce readiness (89.6%), with learning completion rates (81.3%) and AI-driven decision accuracy (91.4%) at their peak.

Statistical Analysis

Table 9 and Figure 1 highlight the trends in AI adoption and its impact on various metrics from 2015 to 2024.

Table 9: AI Adoption and its impact

Year	AI Adoption Rate	Productivity Gain (%)	Job Transformation Rate (%)	Employee Satisfaction Score (1-10)	AI-Driven Learning Completion Rate (%)
2015	5	2.3	1.5	5.2	10
2016	8	3.1	2.8	5.5	15
2017	12	5.4	4.6	6.0	22
2018	18	7.2	7.8	6.4	30
2019	25	10.5	12.3	6.8	38
2020	35	14.8	18.9	7.2	47
2021	47	19.5	26.2	7.6	55
2022	58	24.1	34.7	8.0	64
2023	69	29.3	42.5	8.5	72
2024	78	34.7	50.2	9.0	80

Table 9, analyses the Over the years, AI adoption steadily increased, reaching 78% by 2024, with corresponding gains in productivity, job transformation, employee satisfaction, and AI-driven learning completion rates. For instance, productivity gains surged from 2.3% in 2015 to 34.7% in

2024, and the job transformation rate increased from 1.5% to 50.2%. Employee satisfaction rose from 5.2 to 9.0, and learning completion rates improved from 10% to 80%, reflecting the growing importance and impact of AI in the workforce

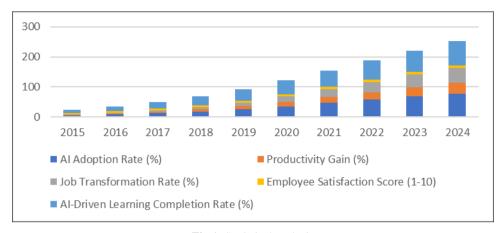


Fig 1: Statistical analysis

Conclusion

This study concluded that Employee satisfaction job transformation learning completion rates productivity and decision-making accuracy all rose in tandem with the degree of AI adoption.

The workforce saw notable improvements in these areas especially at high adoption levels of AI suggesting that businesses are benefiting greatly from incorporating AI into their daily operations. AI adoption and workforce engagement were highest in industries like banking healthcare and IT while adoption and results were lower in industries like manufacturing and retail. Additionally AIs contribution to upskilling decision-making and personalized learning has become crucial for workforce transformation and development. AI adoption is highly correlated with improved productivity decision-making accuracy and learning outcomes according to the correlation analysis which supports these findings even more. Fascinatingly despite AI's positive effects job transformation exhibited a weaker correlation indicating that although AI is changing job roles the degree of change may differ depending on the profession and industry. Further evidence that more complex models such as neural networks produced better results despite longer processing times came from the performance of AI models for workforce transformation. The need for infrastructure and resources to successfully deploy AI solutions was highlighted by the fact that large organizations showed the highest level of AI integration while smaller organizations had difficulty adopting and being prepared for AI. While pointing out the differing degrees of impact depending on industry organization size and AI adoption levels these findings also highlight the crucial role that AI plays in boosting productivity and workforce transformation.

References

- 1. Li L. Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Inf Syst Front. 2024;26(5):1697-1712.
- Qiu S, Natarajarathinam M, Johnson MD, Roumell EA.
 The future of work: Identifying future-ready capabilities for the industrial distribution workforce. In: 2021 ASEE Virtual Annual Conference Content Access. 2021.
- 3. Ho BK. Future workforce planning—Building a futureready organization using a prospective study approach.

- In: Abu Dhabi International Petroleum Exhibition Conference. SPE; 2023. p. D031S079R004.
- 4. Sinha A. Preparing the workforce for the rising use of artificial intelligence. The Res Int Res J. 2024;10(1):1-9.
- 5. Leonard DB. Future-ready education: A policy framework for skills, leadership, and global citizenship. (No publication details available.)
- 6. Brkovic M, Culibrk J, Rikalovic A. Industry 5.0 and the skills gap: Strategies for developing a future-ready workforce. (No publication details available.)
- 7. Pradhan IP, Saxena P. Reskilling workforce for the artificial intelligence age: Challenges and the way forward. In: The Adoption and Effect of Artificial Intelligence on Human Resources Management. Part B. Emerald Publishing Limited; 2023. p. 181-197.
- 8. Mission R, Fio RJ, Mission AR. AI-powered pedagogy: Integrating artificial intelligence in information technology education for future workforce readiness. J Innov Technol Converg. 2024;6(4).
- 9. Al Yahmadi A, Al Mahrouqi S, Al Hinai N, Al Jabri S, Al Hinai N. Al-driven workforce transformation model. In: Abu Dhabi International Petroleum Exhibition Conference. SPE; 2024. p. D021S056R004.
- Accamma CG, Asha S, Venkteshwar A, Maney K. Future-ready HR: Advancement, transhumanism, artificial intelligence, and the metamorphosis of workforce dynamics in the era of technological advancement. In: Enhancing the Modern Workforce Through Transhumanism. IGI Global; 2025. p. 309-334
- Tajudeen FP, Moghavvemi S, Thirumoorthi T, Phoong SW, Bahri ENBA. Nurturing future workforce: Enhancing SME's readiness for digital transformation in Malaysia. In: Digital Transformation of Malaysian Small Medium Enterprises. Emerald Publishing Limited; 2025. p. 91-111.
- 12. Dutta M, Chatterjee S. A study on strategies for building a future-ready workforce: An enabler for organizations to adapt to the new normal and navigate through the pandemic. Innov Manag Pract Interdiscip Approach Spec Ref New Norm. 2021;84.
- 13. Lee AN, Nie Y. Future-oriented learning and continuous skills development: Developing a resilient workforce in changing times. In: Future-Oriented Learning and Skills Development for Employability:

- Insights from Singapore and Some Asia-Pacific Contexts. Springer Nature Singapore; 2024. p. 3-15.
- 14. Bühler MM, Jelinek T, Nübel K. Training and preparing tomorrow's workforce for the fourth industrial revolution. Educ Sci. 2022;12(11):782.
- 15. Mantha SS. The future of the workforce. Univ News. 2024;62:195.
- Singh MV, Chauhan G. Future-proofing the workforce: HR strategies for navigating technological disruptions. Media Educ Natl Educ Policy. p. 204. (Year not provided.)
- 17. Beer A, Bray J, Calloway M. Partnerships for a future-ready workforce. Assoc Community College Trustees. 2018.
- Calonge DS, Kamalov F, Aguerrebere PM, Hassock L, Smail L, Yousef D, et al. Upskilling and reskilling in the United Arab Emirates: Future-proofing careers with AI skills. J Adult Contin Educ. 2025;14779714251315288.
- 19. Uma Maheswari K, Deepa R, Bhagyashree N. AI's effects on customer relationship management in the banking sector. Int J Bus Econ Res. 2024;Special Issue: (pages not provided).
- 20. Uma Maheswari K, Yamunashree B. Impact of AI on online customer satisfaction. Int J Bus Econ Res. 2025 Feb 28;Special Issue: (pages not provided).